caeleste

Presented at Space-based Lidar Workshop 22 June 2023, Milos, Greece

FLAMES

High-Speed Flash-LiDAR CMOS Imager for Landing Missions

<u>G. Cai¹</u>, V. Schuddinck¹, A. Babaiefishani¹, K. Liekens¹, B. Van Camp¹, A. Mahmoud¹, R. Nagarkar¹, B. Dierickx¹, K. Haugholt², B. Nossum², H. Torring², A. Hansen²

¹ Caeleste – Hendrik Consciencestraat 1B, 2800 Mechelen, Belgium

² SINTEF – Forskningsveien 1, 0373 Oslo, Norway

Outline

- Who we are
- Motivation
- Pixel concept
- Architecture of the sensor
- Simulation results
- Conclusions & Outlook

WHO WE ARE

22/06/2023

Caeleste's mission

Be the supplier of beyond state-of-the-art custom-designed **CMOS** image sensors

22/06/2023

Who we are

Address:

- Hendrik Consciencestraat 1b, 2800 Mechelen, Belgium
- Staff:
 - ~ 40 people

3rd International workshop on space-based lidar remote sensing techniques and emerging technologies

aeleste

N12

Lier

N10

E313

N14 Nijlen

Putte

N26

N3

Google

Malle

Zoers

Heist-op

Rotse

Leuve

Herent

Stabroek

A12

Beveren

Kapellen

Antwerpen Wijnegem

Mortse

Mechelen

Edegem Kontich

Vilvoorde

Oudergem

N1

Schaarbeek Brussel

Jette

Ukkel

N6

Machelen

A201

N21 Zaventem

N1

Brasschaat

Schoten

Wommelgen

N14

Business focus

22/06/2023

MOTIVATION

22/06/2023

7

Motivation

- LiDAR for space applications:
 - Controlled soft landing
 - Navigation of rovers
 - Rendezvous of spacecrafts
- Flash vs Scanning LiDAR:
 - Flash LiDAR Can be smaller and lighter
 - Significant higher measurement rate than scanning LiDAR
 - No moving parts for Flash LiDAR

PIXEL CONCEPT

22/06/2023

3rd International workshop on space-based lidar remote sensing techniques and emerging technologies

9

Pixel concept

Collecting photodiode:

- centered
- collect photoelectrons

Non-collecting photodiodes:

- 4 corners
- modulate the sensitivity of collecting photodiode

Transistors:

RM1: time gating with RST, no CDS

- Returning laser pulse crossing the falling edge of RST
- Signal can be sampled on C1 only or C1&C2
- No CDS (Correlated Doubling Sampling)

RM2: time gating with SH, CDS

- Returning laser pulse crossing the edges of SH pulses
- Slower time gating due to limited S&H speed
- CDS used for low noise
 - RESET level on C1
 - SIGNAL level on C2

RM3: time gating with PD modulation, CDS

- Returning laser pulse crossing the edges of PD modulation pulse
- Faster time gating than RM2
- CDS used for low noise
 - RESET level on C1
 - SIGNAL level on C2

ARCHITECTURE OF THE SENSOR

22/06/2023

Architecture of FLAMES sensor

caeleste

- BSI (Backside illumination) is used
- Pixel array are driven from West & East sides
- Top half and bottom half of the array can be driven separately
- Readout are from North & South sides
 - Each side has 8 LVDS channels
 - Each readout channel has 8 timeinterleaved SAR ADCs
- SPI, Voltage references, etc. are at the four corners

Independent control for top & bottom halves caelest

- 4 signals determine the integration time of the pixel
 - RST, SH1, SH2 & PD
- 2 pairs of LVDS receivers for each signal
- Example: RST
 - LVDS pair: RST<1>, nRST<1>
 - LVDS pair: RST<2>, nRST<2>
- Each LVDS pair can control one half independently or the entire array simultaneously

Scan the pixel array in Y direction

- Y address decoder determine the start position of Y scanning
- Y scanner can scan the array from top to bottom
- Always address 2 rows of pixels at the same time
 - One row is readout at the North
 - Another row is readout at the South
- 500fps @ full frame, up to 2000fps with smaller ROI

Pixel readout chain (1)

Column load:

provide current bias for SF2

Column readout circuits:

- PGA: provide column gain which can be x1, x2, x4 or x8
- S&H stage: Odd & Even capacitor banks for pipelining readout
- Video buffer: to multiplexing pixel signals to ADCs

Pixel readout chain (2)

• X scanner:

- control video buffers
- Clock rate: 43MHz

12-bit SAR ADC:

- 8 readout channels at both North and South sides of the array
- Each readout channel has an 8-way time-interleaved SAR ADC

LVDS driver: х address decoder column<11> column<10> Data rate: 516Mbps column<9> column<8> column<7> column<6: column<5> (column<4> Pixel column<3> column<2> column<1; DATA<7> column<0> CH<6> S&H stage nDATA<7> CH<5> CH<4> CR_odd CH<3> SHR_even CH<2> CR_even Video CH<1> Column PGA VREE 11 LIC Gain = x1, x2, x4, x8 CH<0>DATA<0: ill 12bit IDEO S CS_odd Serializer x8 Interleave SHS_even nDATA<0> SPI Column readout circuits (VIDEO R VIDEO S)

SIMULATION RESULTS

22/06/2023

3rd International workshop on space-based lidar remote sensing techniques and emerging technologies

20

RM1 time gating sharpness

- Laser pulse length is 2ns
- Sweep laser pulse delay:
 - from -5ns to +5ns around the falling edge of RST
- Time gating sharpness is ~2ns when fall time of RST < 4ns</p>

RM2 time gating sharpness (1)

- Laser pulse length is 2ns
- Sweep laser pulse delay:
 - from -5ns before SH1 pulse to +5ns after SH2 pulse
- Minor signal degradation when SH pulse length > 10ns

RM2 time gating sharpness (2)

- Laser pulse length is 2ns
- Sweep laser pulse delay:
 - from -5ns before SH1 pulse to +5ns after SH2 pulse
- Minor time gating sharpness improvement when rise/fall time of SH <4ns

RM3 time gating sharpness

- Laser pulse length is 2ns
- Sweep laser pulse delay:
 - from -5ns before SH1 pulse to +5ns after SH2 pulse
 - Time gating sharpness is ~2ns when fall time of PD < 2ns

TCAD: photodiode sensitivity modulation

Simulation conditions:

- Fully depleted 10µm epi thickness
- OFF state: Non-collecting diodes biased at 5V
- ON state: Non-collecting diodes biased at 0V

Learned from TCAD results:

- Fully-depleted high-res epi is required
- No P-Well between collecting diode & noncollecting diodes
- PSUB connection is required between collecting diode & non-collecting diodes to block large surface leakage
- ON-OFF photocurrent ratio is between 2 and 5 depending on the sizes of the diodes

5V

CONCLUSIONS & OUTLOOK

22/06/2023

Conclusions:

- 1.3Mpix, 500fps Flash-LiDAR CMOS image sensor is designed
- Pixel can operate in 3 different modes with their own pros and cons
- Time gating sharpness can be better than 5ns in RM1 & RM3, and better than 10ns in RM2
- Readout noise is expected to be below 10e- with CDS

Outlook:

Tape out will be around the beginning of next month

For more information or questions, please contact:

Gaozhan Cai Design Center Lead gaozhan.cai@caeleste.be

Scan the QR-code to visit our website: www.caeleste.be

Acknowledgement:

This work is supported by ESA, especially Dr. Pol Ribes Pleguezuelo and Dr. Matthew Soman