High dynamic range CIS with true global shutter and charge domain binning Space and scientific CMOS image sensors workshop ESA Noordwijk 22-23 November 2022

A. Kalgi¹, B. Sezgin¹, D.Gautam¹, A. Hoorebeeck¹, <u>B. Dierickx¹</u>, Y. Creten¹, K. Minoglou² ¹Caeleste, Mechelen, Belgium ²ESA, ESTEC, The Netherlands

ESA contract 4000116089 "European Low Flux Image Sensor"

Purpose

The "ELFIS2" image sensor features the combination of

- 1. BSI (Backside illumination)
 - \rightarrow High QE also at near infrared wavelength
- 2. TID and SEL/SEU radiation-hard design
- 3. "True", Motion Artifact Free (MAF) HDR (High Dynamic Range)
 - \Rightarrow By reading the same photocharge on two different conversion capacitances
 - ⇒All values over the full dynamic range have identical integration time and are synchronous
- 4. IWR Global shutter using "GS" CMOS technology, which
 - \Rightarrow Allows low noise readout using CDS (correlated double sampling)
 - \Rightarrow Enabling Global Shutter without dark current penalty

Nice to have

- Binning capabilities
 - 1. Charge domain
 - 2. Voltage domain

ELFIS2 is the successor of ELFIS

Dierickx & al,"A rad-hard, global shutter, true HDR, backside illuminated image sensor", Space & Scientific CMOS Image Sensors Workshop, Toulouse, 26-27 Nov 2019

Outline

- 1. Purpose
- 2. Key specifications
- 3. Charge domain global shutter and HDR
 - Concept
 - Measurement results
- 4. Charge domain binning
 - Concept
 - Measurement results
- 5. QE
- 6. Conclusions

ELFIS2 assembled chip on board [CoB]

Key specifications, measured

Stitching	✓	Back side illumination	✓
Stitch block size	1024 x 512	Backbias capability	\checkmark
Possible resolutions	1024 x 512 2048 x 2048	EPI thickness	6.5 μm, 12 μm, 22 μm HIRES
	9k x 9k	QE for 22µm epi	~80% @ 400 nm
High gain Full well	13 ke ⁻		~85% @ 540-700 nm ~30% @ 1000nm
Low gain Full well (IWR)	180 ke ⁻		0.52 [12µm epi]
Low gain Full well (ITR)	360 ke ⁻	PLS	1/4000 at 630 nm
ROI in Y	\checkmark		1/600 at 830 nm
Read noise at nominal speed, GS	3.5 e _{rms}	Image lag	<0.5%
FPN reduction	✓	PPD dark current	< 500 e ⁻ /s @ 33°C
Voltage domain binning	✓	Output channels for 2k*2k	16
Charge domain binning	✓	Analog outputs	\checkmark
Low noise mode	✓	Nominal channel rate	40 MHz
		Frame rate for 2k*2k	150 fps

3. Charge domain Global shutter and HDR

Charge domain Global shutter and HDR

- During integration
 - charges overflow from PPD to Ca (or Cb) through TG3a (or TG3b)
- Global operations
 - PPD to SN through TG1
 - PPD to Ca through TG3a to transfer remaining charges

Readout

- High gain: SN to FD through TG2
- Low gain: Averaging of FD and Ca

Low gain value is the sum of Ca and FD

- High gain value after CDS is contains all information
- Ca is empty, low gain value is void.

Measured Performance

- High gain swing is limited by storage node capacity
- The overflow mechanism ensures high full well even with a PPD with low depletion voltage
- Obtaining HDR information
 - At low illumination levels, only high gain value is used
 - At high illumination only low gain information is used
 - The transition a weighted average of high gain and low gain values is used

4. Charge domain binning

Concept of Charge domain binning Caeleste

- In 2x2 configuration Pixel 'C' is intended to collect charges
- Others are in non-integrating state

Example implementation

- The center PPD is never reset and thus floating
- PPD evolves to a non-integrating state.

TCAD Potential Profile, ideal case

- 12µm pitch
- 10µm thick HIRES epi (BSI)
- No backbias
- Illumination from backside
- Small diode (non PPD) @3.3V

Observe significant tilt of equipotential lines. Almost complete collection of backside charges in central diode for this simulation case.

Actual situation differs

- Real PPD
- Biased PPD V_{depletion} is at +0.1V
- Floating diode is at -0.4V

TCAD Current density, ideal case

 Current density is highest towards the diodes biased at 3.3V while the diodes at 0V have almost no current flowing into them.

backside@0V

Measured Performance

- Binning concept works
- Performance is much less pronounced that in ideal case
- Ideal: binning has 4x higher response than nominal (non binned)
- Actual: binning has 1.4 times higher response than nominal mode

- ✓ Too small difference in potential between collecting and noncollecting diodes due to low depletion voltage. -0.4 V vs +0.1V.
- Recombination?
- Backside electric field distribution?

5. Quantum Efficiency

Quantum Efficiency

5. Conclusions

Conclusions

- Functionality of the 2k x 2k ELFIS2 sensor demonstrated
 - \circ True High dynamic range: 360000e Q_{FW} / 3.5e Q_{noise} > 100dB
 - Motion artifact free global shutter combined with HDR
- o Concept of charge domain binning in CMOS first time demonstrated, yet with lower efficiency
 - Lower performance probably caused by a low voltage difference between collecting and floating PPDs
- \circ ~ Excellent QE with BSI on 22 μm thick HIRES EPI wafer ~

- Further work
 - o Behavior at Low temperatures
 - TID/SE radiation tests
 - o Qualify low noise modes
 - o On-chip FPN cancellation
 - o Understand and improve charge domain binning