caeleste

A visible light and NIR hybrid CMOS image sensor

Space and scientific CMOS image sensors workshop ESA Noordwijk 22-23 November '22

A. Crouwels¹, A. Keefe¹, M. Z. Khan¹, D. Gautam¹, R. Nagarkar¹, G. Cai¹, J. Vermeiren¹, B. Dierickx¹,

E. Tuovinen², S. Vähänen², K. Minoglou³

- 1. Caeleste, Mechelen, Belgium
- 2. Advacam OY, Espoo, Finland
- 3. ESA, ESTEC, The Netherlands

ESA contract 4000130176/20/NL/AR

Outline

Introduction Key specifications The pixel at ROIC-side The analog readout chain Detector layer Hybridization Electro-optical measurements Conclusions

Introduction

caeleste

Hybrid image sensors are known from

- infrared imagers,
- X-ray detection,
- neural probes

Almost always this is the hybrid of a non-Silicon material to a Silicon ROIC.

In this work we present a Si-Si hybrid: a Silicon detector layer on a Silicon ROIC.

Why?

- Best of both worlds, by independent optimization of
 - a plain CMOS ROIC
 - a very thick HIRES detector layer → strong electro-optical performance
 - Ultimate NIR response
 - Fill Factor of 100 %
 - Fully depleted pixels by independent substrate bias
- No thermal expansion mismatch problems, as with IR hybrids.

Introduction

Key specifications

caeleste

600-500-

200

200

600 700

200

400

Parameter	Value
Number of pixels	1024 x 1024
Pixel size	20µm x 20µm
Readout modes	Global Shutter Rolling Shutter
Windowing	Y-direction
QE x FF 450nm - 950nm 580nm – 920nm Peak @ 805nm Full well	 > 50% > 80% 96% [High Gain] 60ke⁻
	[Medium Gain] 300ke ⁻ [Low Gain] 1.2Me ⁻
Read noise [High Gain]	36 e ⁻ _{rms}
Low noise modes	Column gain, Non-Destructive Readout
Radiation hardness	TID 20krad Proton fluence 1*10 ¹¹ protons/cm ²
Frame rate	40Hz (4 output channels @ 15MHz)

2 500 e

The pixel at the ROIC-side

caeleste

Core: 3T pixel

3-level HDR

- High Gain: 60ke⁻
- Medium Gain: 300ke⁻
- Low Gain: 1.2Me⁻

Global shutter by in-pixel memory

The pixel at the ROIC-side

Analog readout chain

caeleste

Programmable column gain [x1, x2, x4] Odd/Even row readout for parallelization Video bus multiplexing Pseudo- to fully differential conversion

The pixel at ROIC-side

caeleste

ROIC-side contains a pixel electrode Passivation is opened above this pixel electrode Pillar is grown from this ROIC-side opening Solder caps at top of pillar

Detector layer

caeleste

- ~15kOhm-cm
- 50µm thick

Solderable Under-Bump Metallization (UBM) pads at each pixel pad.

Hybridization

Electro-optical measurements - photo response

Photo response for 3 available pixel gains Showing off full well and Charge-to-Voltage Factor

- High Gain
 - Full well: 58.4ke⁻
 - CVF: 32.2 μV/e⁻
- Medium Gain
 - Full well: 302 ke⁻
 - CVF: 6.1 μV/e⁻
- Low Gain
 - Full well: 1.18 Me⁻
 - CVF: 1.3 μV/e⁻

23 November 2022

Electro-optical measurements - QE

Comparison between theoretical & observed QE for

- Hybrid sensor (50µm thick detector)
- ELFIS2 sensor

Quantum Efficiency

Electro-optical measurements - Noise

For a $C_{FD} = 9.9 \text{fF}$

Noise histogram with different column gains Correlated Double Sampling

- High pixel Gain Column Amplifier Gain 1
- High pixel Gain Column Amplifier Gain 4

23 November 2022

Conclusion

caeleste

Demonstrated manufacturability of hybrid Si-Si sensor module for visible & NIR light

Advantages compared to monolithic sensor:

- Improved Near-InfraRed QE due to thick Si Detector wafer options
- Straightforward fully depletion by independent resistivity & biasing of the detector Si-wafer
- Essentially BSI Fill Factor quality

Disadvantages compared to monolithic sensor:

- Limited to 3T-pixel topology, no true CDS as in 4T-pixels
- Decreased sensitivity (CVF), inherent to hybrid architectures
- Keep eye on mechanical stability of the modules
- Multiple additional steps required in production

Future work

- Evaluating low noise modes (NDR, ...)
- MTF, Parasitic Light Sensitivity
- Qualification

23 November 2022

caeleste

Questions?