

easics

ONERA

THE FRENCH AEROSPACE LAB

ESA Contract No 4000124004/18/NL/HB

caeleste

asa

Peng Gao, A. Klelachev, W. Verbruggen, A. Keefe, <u>J. Vermeiren</u>, Bart Dierickx, Tim Morlion*, Bert Van Thielen*, Ramses Valvekens*, Alec McCalden**, Martin Frericks**, Jörg Ter Haar***, Richard Jansen***, Frederic Lemmel***, Laurent Artola****

SRON

Caeleste, Belgium; *EASICS, Belgium; **SRON, The Netherlands; ***ESTEC, The Netherlands; ****ONERA, France

- Motivation
- Architecture
- Building blocks design
- Test results
- Conclusions

Motivation

aLFA-C ASIC: interfacing astronomical science missions sensors

- Analog domain
 - Signal conditioning
 - A/D converter
 - Regulated power supply
 - Bias voltage/current references
 - House keeping
- Digital domain
 - Sequencer
 - Memory
 - SpaceWire

Environmental constraints:

SPACE

Radiation toleranceHigh reliability

Infrared sensors

•Operating close to the focal plane temperature e.g. << 77K

Development status

•aLFA-C: prototype (2014)

- 16-bit SAR ADCs
- Programmable sequencer
- Memory cells
- All key building blocks perform well at RT and 77K

•aLFA-C: full chip (this work)

- 38 16-bit ADCs
- Digital core: DARE018 Analog core: Caeleste RH
- Technology: UMC018
- Successfully tested over temperature range
 - Operational down to 24.5K demonstrated
 - Characterized at RT, 77K and ~30K
- Performed radiation test
 - TID: up to 290 krad
 - Heavy ion: up to LET 62,5 MeV.cm²/g

- Motivation
- Architecture
- Building blocks design
- Test results
- Conclusions

aLFA-C Architecture / block diagram

Video channels

- 32+4 channels
- 100ksps
- Input method
 - 32/64 Single ended
 - 32 Fully Differential
 - Parallel or interleaved sampling: 1/2/4/8/16/32

Single "video" channel

Control

- All 38 ADCs
- All 32 digital outputs
- All 16 digital input

• Trigger on-chip µ-processer

- Parameter Sweep
- Other tasks

Room temperature test setup

caeleste

Cryo and radiation test setup

1 - TB001255

CRYOGENIC at SRON

Heavy ion test at UCL 9000

10000

© Caeleste 2021 11 17

TID at ESTEC

- Motivation
- Architecture
- Building blocks design
- Test results
- Conclusions

Cryogenic behavior, ADC as an example

- 16 bit ADC: 92 µV/DN
- Slightly lower noise at 29 K

Measurement: ADC linearity @ RT

All 32 ADC's superimposed

© Caeleste 2021 11 17

Radiation: overall circuit behavior

- Co-60 TID: measured at 6 times higher dose than spec
- No effect on power dissipation (graph)
- No Latch-up observed

Power supply domain

AD converter

caeleste

4096 8192 12288 16384 20480 24576 28672 32768 36864 40960

45056

49152 53248 57344 61440 65536

© Caeleste 2021 11 17

TID radiation, INL video ADC 0 for different dose rate, device 4x8

	lon	Flux	Fluence reached	Scrubbing enabled?	SEU						SEFI
LET					RMAP	Ev.Mem.	Ser.Mem.	Prog.Mem.	Data.Mem.	CORR	ERR
10.2	Ar	300	9.16E+05	No							
20.4	Ni	1000	6.00E+05	No							
32.1	Kr	1000	5.20E+05	No							
62.5	Xe	500	7.00E+05	No							
62.5	Xe	500	8.00E+05	Yes							

- Motivation
- Architecture
- Building blocks design
- Test results
- Conclusions

Conclusions

• aLFA-C ASIC has all expected features to control IR FPAs

- High resolution ADC
- Lower noise reference voltage
- Highly programmable sequence

Proven operation

- Room T down to 24.5K
- Radiation tolerance
 - TID: up to 290krad
 - Heavy ion: up to 62,5 MeV.cm²/g LET

Acknowledgements

caeleste

The work is performed under: ESA Contract No. 4000124004/18/NL/HB

Our project partners

