caeleste 0

16.7M Pixel 8000fps Sparse Binarized Scientific Image Sensor

Peng Gao, Sampsa Veijalainen, Jente Basteleus, Gaozhan Cai, Bert Luyssaert, Bart Dierickx Caeleste, Belgium

IISW 2019

Outline

- Introduction
- Challenges and design solutions
- Measurement results
- Take home message

Introduction

Binarized sensor for counting based image

Application: sparse particle detection

Key Features

- High frame rate
 - Higher flux
 - Less motion blur
- Low variability detection threshold:
 - Lower bit error rate

Summary of performance

Pixel Array		8 µm 4T 4096 x 4096
	4k by	6k, 4k by 8k are possible stitch configurations
Frame rate		8000 fps
Equivalent Pixel rate		8kfps x 4k x 4k = 134 Gpixel/s
Output interface		48 Gbit/s (64channels*750Mbit/s)
Data compression		Yes
Shutter type		Rolling readout
ADC		1 bit
CVF at FD (before ADC)		66 μV/e- (580 μV/e-)
Bit error rate		1e-6
Min detection threshold (σ)		130e- (28e- _{RMS})
Power		<5W @ 3.3V & 1.8V
Technology		CIS 0.18µm

Outline

- Introduction
- Challenges and design solutions
- Measurement results
- Take home message

Frame rate challenge: 8000fps caeleste

Long wire settling:

- > Source follower and 4cm wire
 - RC $\tau > 200$ ns
 - Available Row time $T_{1row} \approx 30ns$
- Long video line

Solution

- Parallelism
- Segmentation
- Current readout instead of voltage

Implementation

- 32 rows readout in parallel. $T_{32row} \approx 1 \mu s$
- North, South separation: column wire RC 4X
- Column segmentation
- TIA (Transimpedance amplifier) in both column and video line readout

Data rate challenge

If all pixels would be read at 8000fps:

- > 134 Gpixel/s
- Or after binarization: 134Gbit/s

Solution

- On chip kernel (group of pixel) based sparse image compression
- Only the kernels that contain (at least) one hit are read out

Implementation

- "slices" of pixels = 2 times 16 rows are copied to processing area
 - Each side 16 rows
- Subdivided into 4x16 pixels kernels and coded unique address
- Kernels are evaluated and scanned by a priority encoder
- 64 bits data and 8 bits address are output over 64 parallel LVDS channels at 750Mbit/s/ch. i.e. 48Gbit/s
- ~32% of the array

Architecture

caeleste

- 2 by 2 stitch
- 2 side read readout
- Simultaneously 16 rows readout at each side
- Segmentation: 4 X1024 columns

Signal chain of one segment

Detection threshold challenge caeleste

- Particles create charge packets of 200... 1000 secondary electrons, collected by one or multiple photodiode
- Low bit error rate: < 1e-6</p>
- Threshold: <150 e-</p>
 - With low static variability
 - With low temporal variability (noise)

Detection threshold variability caeleste

Solutions:

- CDS
- High signal gain (CVF_{TIAout}) before CDS and comparator $CVF_{TIAout} = CVF_{FD} * g_{msf} * R_f$
- Remaining mismatch and noise: device sizing
 The variability of detection threshold (σ) < 28e-

Outline

- Introduction
- Challenges and design solutions
- Measurement results
- Take home message

Threshold vs false hit rate

Fe55 test result

14

Outline

- Introduction
- Challenges and solutions
- Measurement results
- Take home message

Large array high frame rate achieved by:

- Exploiting sparseness
- Current mode read out to speed up settling

Low detection threshold realized by

- CDS
- High signal path gain prior to CDS and comparator
- Device sizing for matching and low noise

Thank you! Questions?

Detection threshold variability caeleste

caeleste

Data rate challenge

If all pixels would be read at 8000fps:

- > 134 Gpixel/s
- Or after binarization: 134Gbit/s

Solution

- On chip kernel (group of pixel) based sparse image compression
- Only the kernels that contain (at least) one hit are read out

Implementation

- "slices" of pixels = 2 times 16 rows are copied to processing area
 - Each side 16 rows
- Subdivided into 4x16 pixels kernels and coded unique address
- Kernels are evaluated and scanned by a priority encoder
- Kernel data (64 bits) and address (8 bits) are output over 64 parallel LVDS channels at 750Mbit/s/ch. i.e. 48Gbit/s
- ~32% of the array

Threshold binarized image

caeleste

* This is not the real application. Just a demonstration of binarized images

Threshold 100 e-

Threshold 140 e-

Threshold 180 e-

Threshold 220 e-

Threshold 260 e-

Threshold 300 e-

Threshold 340 e-

Threshold 380 e-

caeleste

Average of the previous 8 binarized images

→ a 3-bit image