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Outline

1. Introduction, purpose 

Direct extracellular neuron signal sensing

Our approach

2. Pixel design & performance

Sense amplifier design

Measured performance

3. Future outlook

In-pixel analog domain filtering

Prototype results
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Detecting neural events in the brain 

→ by an array of microelectrodes connected to 

an array of voltage amplifiers

→ like a large channel count oscilloscope with

10µV 20kHz resolution

1. Introduction: purpose
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Microwire Electrodes
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One microwire

electrode can record 

spiking activity from 

several neurons.
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Connecting microwires 

directly to a CMOS array 

allows for readout, 

digitization,

and multiplexing.

CMOS with Metal Contact Pads

Polished bundle

Recording from 

microwire electrodes



Press the bundles onto 

CMOS sensor
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(for alignment)

Bundle before Pressing
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Parameters Specifications

# of neural sensors 65,536 (256x256)

Full frame readout up to 39,000 

frames/s

on 32 analog outputs

Input referred 

noise

< 10 µVrms

(100 Hz- 20 kHz)

Voltage gain 100 – 800 V/V

Input impedance > 1 TΩ

Pixel pitch 50 mm

Henry/Argo 

sensor array 

Each pixel contains a high-gain, AC-

coupled, low-noise voltage amplifier
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→ overall pixel topology

→ design for compactness & for low noise

→ sense amplifier

→ pixel layout

→ measured performance in the array

2. Pixel design & performance
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Class-A amplifier 

with resistive self-biasing

1MegOhm

2…4pF

~1pF
Rfeedback

input

>1MΩ

output

Optimized for 1/f noise: single PMOSFET

10

>1TΩ



Compact high value resistor
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PRO

• Compact: a diode-connected MOSFET + a 

MOSFET bias current source

• R=1/gm AC value hardly dependent on 

variability of the 1st MOSFET.  Dependent on 

the variability of the bias

• Can make extremely high R 

e.g. 1TΩ for IBIAS=25fA.

Needed to make very low RC time: 

1TΩ*100fC=0.1s

CON

• Needs an exclusive DC path for the IBIAS

• Only AC / small signal: << 100mV

• Not very linear

• Offset must be solved by AC coupling

• 1/f noise

𝑅 =
1

𝑔𝑚
=

𝑘𝑇

𝑞. 𝐼𝐵𝐼𝐴𝑆
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Actual Class-A amplifier
self-biasing with MOSFETs

- Gain = 10

- Rload = 1Mohm

- LNA+LPF input referred noise reaches 10µVRMS
R

>
1
T

Ω

output

input
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Actual Henry pixel topology
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Henry pixel

LNA1

LNA2
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Total pixel

gain 

and BW
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PSD + input noise histogram
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Henry pixel noise
input referred noise of one row of pixels
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→ recognize pulse shapes by matched filters

→ design of programmable filters

→ measured performance of prototypes

3. Future outlook
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Data reduction == recognize these shapes
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Pixel topology

20

Electrode

in tissue

Sense 

amplifier

100x

Lowpass

Bandpass

Resonant

Q, f, A

Lowpass

Bandpass

Resonant

Q, f, A

Lowpass

Bandpass

Resonant

Q, f, A

Lowpass

Bandpass

Resonant

Q, f, A

Lowpass

Bandpass

Resonant

Q, f, A

Σ
weights

+

+

-

-

Σ
weights

+

+

-

-

Σ
weights

+

+

-

-

reference

comparator

time stamp

S&H

S&H

S&H

--
--

--
--

--
--

--
--

--
--

--
--

--
-
P

ix
e
l 
o
u
tp

u
ts

 -
--

--
--

--
--

--
--

--
--

Principal component 1

Principal component 2

Principal component 3



Programmable filters

Filters

• (resonant) bandpass filter

• (resonant) lowpass filter

• summator

Based on “ideal” R+C active filters

Actually IBIAS/gm+ C implementations

Continuous programmability of center/lowpass frequency, 

Q and gain, by programming IBIAS

Patent WO 2018/191725 pending 21



The OTA

• All transistors are minimum 

sized, or larger for mismatch

• Tail current can be adjusted

between <1fA and >1µA 

• Gain = between 100x and 200x
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Resonant bandpass filter (ideal)

Bandwidth = β

Quality factor = ω0/β
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Actual 

implementation

Pro: compact layout

Pro: easy to implement, pure MOS

Pro: input offset free

Pro: programmable by current

Con: one less degree of freedom 

(R2 absent): 

If Q must be large, the difference 

between the two currents becomes 

huge.

If Q is too small, the center gain H0 

becomes small as well.

10µm
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Sweeping both branch currents (simulation) 

 The two branch currents are 

adjusted to obtain the desired 

Q and resonant frequency 

 C=100fF
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BPF measurement vs simulation 
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2nd order low-pass filter

27

5µm



LPF measurement vs simulation 

28

-10

-8

-6

-4

-2

0

2

4

6

8

200 400 800 1600

G
ai

n
 [

d
B

]

Frequency [Hz]

Simulation Chip1 Chip2 Chip3 Chip4

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

600 700 800 900 1000
P

e
a

k
 g

a
in

Peak frequency [Hz]

LPF: Monte Carlo vs Measurement

Monte Carlo Measurement



29

 Pure MOSFET design

 All transistors have minimum size (except when 

needed for matching)

 Capacitors are 100fF MOS

 Input stages are PMOSFET source followers

 By adjusting the currents one can set the SF’s 

output impedance, hence the gain of each 

branch
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Multi-input differential summator



Summator layout

4 + inputs

4 - inputs
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Summator:

simulation vs.

measurement

Three different branches with different 

gains 0dB, -4.5dB, -9dB

Measurement compared with 

simulation
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4 Conclusions
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Conclusions

• Unprecedented massive parallel 256x256, 50µm pitch 

neural probe ROIC

• 10µVRMS @ 20kHz bandwidth

• Compact, in-pixel analog domain filters demonstrated

• Fully programmable

• Key design issue: mismatch of MOSFETs causes 

variability of frequency, gain and Q
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