AIM Infrarot-Module GmbH

Improved Low Dark Current MWIR/LWIR MCT Detectors: First results of ROIC and MCT measurements Holger Höhnemann, Toulouse, July 4, 2018

Overview

- □ Introduction Low Dark Current (LDC) Program
- ROIC Highlights
- □ FPA and Test Devices
- ☐ Test Stand Design
- □ Selected Measurement Results
- **□**Summary

Objectives of the LDC program

- The requirements for optical astronomy are highly demanding detectors for nearly photon counting in the mid- and long wave IR range.
 - Therefore the detector chip shall have a negligible dark current.
 - The read out circuit shall have a low saturation value for the collected photons.
 - ➤ The detector shall have negligible noise.
- The former ESA low dark current project was addressing the MCT detector chip mainly, but the available ROICs and test environments gave some limitations to the achievable results.
- Within this ESA project "Development OF Low Dark Current MWIR/LWIR Detectors" an improved MCT material as well as a suitable read out circuit and an appropriate test set up should be prepared and characterised.

■ ESA Project "Low Dark Current MWIR/LWIR"

- A consortium of three partners was set up to achieve the required goals:
 - AIM Infrarot Module: as project leader and for MCT improvement
 - CAELESTE B.V: for the ROIC design
 - University of Cardiff, School of Physics & Astronomy: for the cryogenic tests
- Within this project a ROIC was designed, which has four different input stages for direct comparison of the capabilities of the different topologies.
- AIM applied some process modifications to improve the dark current behaviour for N-on-P and also for P-on-N MCT detector devices.
- University of Cardiff has prepared a highly light tight cryogenic test dewar to allow really dark measurements.

caeleste ROIC Overview

- Array size : 4x320 (H) x 1080 (V)
 - MCT arrays with 320x320 pixels were assembled on this ROIC
- Pixel pitch: 20 μm
- Different Arrays are dedicated to different input stage topology:
 - 7T rad hard CTIA
 - 5T rad hard CTIA
 - 5T CTIA (using standard cell design)
 - Source follower
- Each Segment assigned to single Video output.
- Each segment can be operated ,,stand alone".

caeleste ROIC Capabilities

- Shutter modes:
 - Integrate While Read (IWR)
 - Integrate Then Read (ITR)
 - Rolling shutter (RS)
 - Non-Destructive Readout (NDR) or Fowler sampling
- Radiation hardness
 - TID, SEU, SEL
- Indium bump to MCT, 'P on N' and 'N on P' type
- Programmable Integration capacitance: 8fF, 40fF
- Pixel readout rate: 20 MHz
- Operating temperature: 40K 80K 300K
- CMOS Technology : 0.18 μm XFAB

caeleste ROIC Input Stage

- Fully programmable pixel
- CTIA based
- Bi-directional
 (N on P, P on N)
- CDS
- Programmable integration capacitor
- All shutter modes:
 - IWR global shutter
 - ITR snapshot shutter
 - Rolling shutter
 - NDR Fowler sampling

caeleste Input Cell Design

AIM

• High density pixel design

caeleste ROIC Programming

AIM

"SPI"

- The pixel array, column readout and other blocks are controlled by serial to peripheral like interface
- Toggling of a switch requires uploading logic '1' and logic '0' for a particular ASPI bit
- Any shutter mode can thus be obtained by simple FPGA programming

FPA assembly 1

- AIM has assembled two different types of FPAs: Devices for the selection of the input stage and devices for comparison of MCT samples.
- For assembly 1 three MCT detectors of the same type with cut-off values at 12.5µm@40K are hybridized on one ROIC.

■ Test Device for assembly 1

■ Test device for FPA assembly 2

AIM

• For the FPA assembly 2 two different MCT samples with cut-off values at 12.5 µm @ 40K having two different process modifications are assembled on one segment for direct comparison.

Test Cryostat setup

• Cross section of the liquid helium cryostat

Cryostat inner housing with assembled DUT

■ Measurement: ROIC with test pixels

• Pixel response with capacitive input @ room temperature

■ Measurement: Comparison of input stages

- Image representation of the center test MCT of assembly 1 under illumination is shown.
- This configuration allows direct comparison between input stage topology.

■ Measurement: Bias voltage characteristic MCT (1)

• MCT reverse bias characteristic for N - on - P material (cut-off 12.5μm @ 40K)

■ Measurement: Bias voltage characteristic MCT (2)

• MCT reverse bias characteristic for P - on - N material. Cut-off values at 12.6 µm @ 40K. Here an impact of the doping level on the reverse breakdown voltage can be observed

■ Measurement: Dark current (1)

- MCT electrical results: N on P
 - Eqivalent dark current is comparable to former results at LN2 temperatures and lowest known dark current values reported ever for lower temperatures.

■ Measurement: Dark current (2)

- FM003 MCT electrical results: P on N
 - Eqivalent dark current is comparable to former results for low dark current materials at higher temperatures.
 - Best results achieved ever for 42K operating temperature. Tests are ongoing.

Summary

- Within this project a new design and test approach for low flux MWIR and LWIR MCT detectors was set up.
- New ROIC and improved MCT detector devices were prepared and tested.
- Initial ROIC design is fully functional. High flexibility in operating modes by programming capabilites via fast SPI interface.
- A test equipment was build up to ensure complete dark test environment.
- The lowest known dark current value ever reported was measured for operating temperatures at 40K and below.
- Measurements are ongoing, further highlights are expected.

■ Acknowledgements

This program was funded by the ESA TLP program ,, Development OF Low Dark Current MWIR/LWIR Detectors"

Many thanks for contributing to this project to

- Dirk van Aken (CAELESTE)
- Ajit Kalgi Kumar (CAELESTE)
- Dr. Peter Hargrave (University of Cardiff)
- Rashmi V. Sudiwala (University of Cardiff)
- Dr. Stefan Hanna (AIM)