
1

Characterization of CMOS Image Sensor

Master of Science Thesis

For the degree of Master of Science in Microelectronics at Delft

University of Technology

Utsav Jain

July 21,2016

Faculty of Electrical Engineering, Mathematics and Computer Science · Delft University of

Technology

2

Delft University of Technology

Department of

Electrical Engineering

The undersigned hereby certify that they have read and recommend to the Faculty of

Electrical Engineering, Mathematics and Computer Science for acceptance a thesis

entitled

Characterization of CMOS Image Sensor

by

Utsav Jain

in partial fulfilment of the requirements for the degree of

Master of Science Microelectronics

Dated: July 21,2016

Supervisor(s):

prof. dr. ir. Albert J.P. Theuwissen

M.S.EE Dirk Uwaerts

Reader(s):

prof. dr. ir. Albert J.P. Theuwissen

prof. dr. ir. Andre Bossche

prof. ing. H.W.(Henk) van Zeijil

3

Acknowledgment
This master thesis project marks the end of my M.Sc. journey with lots of high and some lows.

This experience was full of knowledge, uncertainty, life lessons and cherishing moments. I

always wanted to pursue master degree and with the support of my family, friends, colleagues

and professors, I accomplished my dream. I would like to thank all individuals who have

accompanied me during this journey. Thank you all, who contributed in many ways to make

this thesis possible and an unforgettable experience for me.

First and foremost, I would like to give my sincere thanks to my daily supervisor Mr. Dirk

Uwaerts, System Development Manager at Caeleste for his supervision of my thesis. This work

would not have been possible without guidance, patient supervising and encouragement. I

would also like to give my sincere thanks to Prof. Albert J.P. Theuwissen, who introduced me

to the world of image sensor. It was his unique way of teaching and enthusiasm that developed

interest in me for image sensors.

Next, I would like to thanks Bart Dierickx and Patrick Henckes of Caeleste CVBA to give me

the opportunity to do my master thesis project at their company. I would like to thanks all the

test system team to help me to perform the measurements and helping me in building

measurement setups and learning the software environment. A special thanks to Alexander

Klekachev and Walter Verbruggen for their day to day help and support, we have spent quality

time together with all the discussions about ways to improve measurement procedure and to

upgrade hardware and software tools. I would also like to thank design team of Caeleste for

their help in making me understand CMOS image sensor design and characteristics and for

providing constant feedback on measurement results. I would like to express my gratitude to

Bert Luyssaert who was always there for explaining any doubt regarding measurements and

optical aspect of CMOS image sensor.

Next, I would like thanks my friends, Mansi Shah, Shreyans Jain and Nitant Shinde for making

me laugh in moments of stress and motivating me to work harder on my thesis. A special thanks

to my friend Sri Harsha Achante for late night studies, performing simulations and completing

course assignments. These memories and the friendship is invaluable.

Lastly, I would like to thank my parents and my brother for all that they have done for me.

Only with their support I could take the courage to study across the globe. Thank you for your

continuous love, care and encouragements throughout my life.

4

Abstract
CMOS image sensors comprises of two process: designing and measurement/testing. CMOS

image sensors are designed with certain characteristic performance and it is important to

measure these characteristics accurately. CMOS image sensor convert light information into

digital information which can be reproduced in form of an image. Conventional 4T pixel with

pinned photodiode is a popular choice for designing image sensor; with certain modification in

the pixel architecture better characteristic performance can be achieved with trade-offs.

Quantum efficiency, linearity, full-well capacity, conversion gain, noise, non-uniformity, dark

current, modulation transfer function and image lag are main characterises of CMOS image

sensor. Quantum efficiency defines the efficiency of the image sensor and ideally it should be

100 percent i.e. 1electron-hole pair for every photon incident with linear photo response.

Higher full-well capacity means more number of electrons that can be generated which results

in higher dynamic range and better signal to noise ratio. Conversion gain tells the efficiency of

signal processing unit, higher the better. Noise sets the dynamic range of the image sensor by

defining the lower limit of signal level, continuous advances have been made to reduce the

noise and some image sensor can achieve noise level of 1e-. Modulation transfer function

defines the spatial resolution of the image sensor, which is also the measure of optical crosstalk

of the image sensor. Another characteristic which is more of an advantage over CCD image

sensor is image lag which is also known as memory effect; defines the image sensors ability to

transfer charge from photodiode to floating diffusion. These characteristic parameters define

the CMOS image sensor and having a standard measurement procedure for computing this

characteristic is necessary.

This report presents the standard measurement procedure to characterize CMOS image sensor.

This project is an internal project for Caeleste CVBA, Mechelen, Belgium, hence the

measurement procedures are more specific to Caeleste requirement and follows EMVA 1288

standards. Measurement procedure includes all the details to evaluate the characteristic

parameter: measurement background, block diagram, procedure and data processing are some

of key elements of the procedures. We at Caeleste performed different methods to compute a

characteristic parameter accurately and precisely. Also software library and hardware tools

were updated for improving measurement accuracy and speed.

5

Table of Contents

Acknowledgment ... 3

Abstract.. 4

List of Figures .. 9

List of Tables ... 10

 Chapter 1 .. 11

Introduction ... 11

Thesis Organization ... 11

 Chapter 2 .. 13

Overview of CMOS Image Sensor .. 13

2.1. Background of CMOS image sensor .. 13

2.2. Pinned Photodiode .. 14

2.3. 4T Active Pixel Sensor Architecture .. 14

2.3.1. Electronic shutter modes... 16

 Chapter 3 .. 18

LED Light Source .. 18

3.1. Stability ... 18

3.2. Spectral Response ... 19

3.3. Spatial uniformity ... 20

3.4. Conclusions ... 21

 Chapter 4 .. 22

Characteristic Parameter of CMOS Image Sensor .. 22

4.1. Quantum Efficiency and Spectral Response ... 22

4.1.1. Definition .. 22

4.1.2. Measured value versus Theoretical value ... 23

4.1.3. Fringing effect or Etaloning effect ... 23

4.2. Photo Response Curve .. 24

4.2.1. Definition .. 24

4.2.2. Non-Linearity ... 24

4.2.3. Full well capacity (FWC) ... 25

4.2.4. Saturation (Vsat) .. 25

4.2.5. Charge to voltage factor (CVF) .. 25

4.3. Modulation Transfer Function .. 26

4.3.1. Definition .. 26

4.3.2. Source of cross talk ... 26

6

4.3.3. Slanted Edge method .. 27

4.3.4. Correct Image and Lens Setting ... 27

4.4. Noise and Non-uniformity .. 27

4.4.1. Definition .. 27

4.4.2. Temporal Noise .. 28

4.4.3. Spatial noise .. 30

4.5. Dark current .. 30

4.5.1. Definition .. 30

4.5.2. Mechanism.. 31

4.6. Image Lag ... 34

4.6.1. Definition .. 34

4.6.2. Cause of Image Lag .. 34

 Chapter 5 .. 35

Measurement Procedure Overview ... 35

5.1. Quantum Efficiency and Spectral Response ... 36

5.1.1. Objective ... 36

5.1.2. Measurement Background .. 36

5.1.3. Measurement Setup .. 37

5.1.4. Measurement Procedure ... 38

5.1.5. Accuracy of the method .. 39

5.1.6. Alignments.. 40

5.1.7. Data Processing .. 40

5.1.8. Graphs and Figures ... 41

5.2. Photo Response ... 42

5.2.1. Objective ... 42

5.2.2. Measurement Background .. 42

5.2.3. Measurement Setup .. 42

5.2.4. Measurement Procedure ... 43

5.2.5. Accuracy of the method .. 44

5.2.6. Data Processing .. 44

5.2.7. Accuracy of the method .. 47

5.3. Modulation Transfer Function .. 48

5.3.1. Objective ... 48

5.3.2. Measurement Background .. 48

5.3.3. Measurement Setup .. 49

7

5.3.4. Measurement Procedure ... 50

5.3.5. Accuracy of method .. 50

5.3.6. Data Processing .. 50

5.3.7. Graphs and Figures ... 52

5.3.8. Three-point derivative method ... 54

5.3.9. Code Description .. 55

5.3.10. Example .. 57

5.4. Read Noise .. 58

5.4.1. Objective ... 58

5.4.2. Measurement Background .. 58

5.4.3. Measurement setup ... 58

5.4.4. Measurement Procedure ... 58

5.4.5. Data Processing .. 59

5.4.6. Accuracy of the method .. 59

5.4.7. Graphs and Figures ... 59

5.5. Dark signal and Dark signal non-uniformity .. 61

5.5.1. Objective ... 61

5.5.2. Measurement Background .. 61

5.5.3. Measurement setup ... 61

5.5.4. Measurement Procedure ... 61

5.5.5. Data Processing .. 62

5.5.6. Accuracy of the method .. 62

5.5.7. Graphs and Figures ... 62

5.6. FPN and PRNU ... 63

5.6.1. Objective ... 63

5.6.2. Measurement Background .. 63

5.6.3. Measurement setup ... 63

5.6.4. Measurement procedure.. 64

5.6.5. Data processing ... 64

5.7. Image Lag ... 65

5.7.1. Objective ... 65

5.7.2. Measurement Background .. 65

5.7.3. Measurement Setup .. 65

5.7.4. Measurement Procedure ... 66

5.7.5. Data Processing .. 66

8

5.7.6. Graphs and Figures ... 66

 Chapter 6 .. 68

6.1. Summary and Conclusions ... 68

6.1.1. Conclusions .. 68

6.2. References ... 69

 Chapter 7 .. 73

Appendix ... 73

7.1. Python Code for Filtering ... 73

7.2. Python Code for MTF measurement ... 77

7.3. List of Acronym .. 90

9

List of Figures
Figure 2.1-1- Physical model of a camera. .. 13
Figure 2.2-1- Cross section of PPD structure. Fundamental Characteristics of a Pinned

Photodiode CMOS Pixel [10]. .. 14
Figure 2.3-1- Schematic of CMOS 4T APS with PPD. .. 15
Figure 2.3-2- (a) Operation of 4T APS, (b) Timing diagram of signals. 16
Figure 2.3-3- Working principle of (a) Rolling shutter mode and (b) Global shutter mode

[19]. ... 17
Figure 3.1-1- Intensity of LED light source in function of time. .. 18
Figure 3.1-2- Temperature of light source in function of time. .. 19
Figure 3.2-1- Spectral response of Blue, Green and Red LED light source. 19
Figure 3.3-1-3D and 2D plot of Spatial intensity of the LED light source at (a) 10cm, (b)

20cm and (c) 30cm distance between monochromator output and photodiode. 20
Figure 4.1-1-(a) Electron-hole generations by photons with different wavelength, (b) Photon-

generated carriers by a p-n junction/photodiode. .. 22
Figure 4.1-2- Fringing effect in QE and SR measurement result. ... 23
Figure 4.1-3- Principle of etalons and its transmission curve [24]. .. 24
Figure 4.3-1- Optical cross talk in a single pixel. ... 26
Figure 4.4-1- Major Noise sources in a 4T pixel PPD. ... 28
Figure 4.4-2- (a) nMOS transistor modelled as switch and a resistor in series with floating

diffusion capacitor, (b) KTC noise sampled when switch is opened and closed. 29
Figure 4.5-1- Energy band diagram of tunnelling process of a heavily doped p-n junction

[40]. ... 33
Figure 5.1-1-Layout of QE test structure (full pixel array is not shown). 36
Figure 5.1-2-QE structure connection diagram. .. 37
Figure 5.1-3- QE measurement setup schematic. .. 37
Figure 5.1-4 - Slit width and bandwidth configuration [43]. .. 38
Figure 5.1-5 - QE setup accuracy diagram. ... 40
Figure 5.1-6 - Plot of QE and SR in function of wavelength. ... 41
Figure 5.2-1- Setup diagram for PR and CVF measurement. ... 42
Figure 5.2-2- Photo response curve... 44
Figure 5.2-3- Non Linearity from Photo response curve. ... 44
Figure 5.2-4- Photo response curve showing full well capacity. .. 45
Figure 5.2-5- Full well from Noise curve. .. 46
Figure 5.2-6- CVF from Photo response curve if Quantum efficiency value is known. 47
Figure 5.2-7- CVF from PTC curve using mean variance method. .. 47
Figure 5.3-1-Slanted edge with ROI. .. 48
Figure 5.3-2-ESF curve obtained by projecting data from corrected image [29]. 48
Figure 5.3-3- Relationship between PSF, ESF, LSF and OTF [44] 49
Figure 5.3-4- Setup for MTF measurement inside dark chamber. .. 49
Figure 5.3-5- (a) Target edge with ROI and (b) Flat-Filed corrected image for computing

ESF. ... 52
Figure 5.3-6- Graph between interpolated column number and row number (a) Raw data of

column values and (b) Linear polyfit data of column values. ... 52
Figure 5.3-7- Edge spread function of the edge image on y-axis normalized signal and on x-

axis pixel number, (a) Using raw data and (b) Interpolated data for pixel number. 52

10

Figure 5.3-8- Line spread function of the corrected edge image, (a) LSF from actual data and

(b) LSF of perfect edge. .. 53
Figure 5.3-9- MTF of the corrected the edge image along with the perfect MTF obtained from

perfect LSF. ... 53
Figure 5.3-10- Three-point derivative method. ... 54
Figure 5.4-1-Setup for Noise measurement. ... 58
Figure 5.4-2- a) Noise per row and b) Its histogram. .. 59
Figure 5.4-3- a) Noise per column and b) its histogram. .. 60
Figure 5.5-1- Setup for DS and DSNU measurement. .. 61
Figure 5.5-2-Signal level in function of Integration time setting at different sensor

temperatures. ... 62
Figure 5.6-1- Setup for FPN and PRNU measurement. .. 63
Figure 5.7-1- Setup for Image lag measurement. .. 65
Figure 5.7-2- Timing diagram for Image Lag measurement. .. 66
Figure 5.7-3- Image lag for 50 frames with 5 consecutive light and dark frames. 67

List of Tables
Table 3.2-1- Spectral specification of LED light source. .. 19

11

 Chapter 1

Introduction
Standard and Accurate measurement procedure are key to a successful image sensor design.

Importance and need of standard measurement procedure for CMOS image sensor cannot be

stressed more. Measurement of any opto-electrical system is an art and it should be precise and

accurate. With the ever-growing technology, many technical advances and improvements have

been reported in CMOS image sensor, so it becomes challenging to accurately determine the

performance parameters, hence it is important to have a standard procedure to characterize the

sensor.

The main motivation for my thesis was to get deep understanding of CMOS Image sensor, right

from fabrication process to test and characterize the imager. As I first learned about CMOS

image sensor, I was fascinated and curious to learn more and decided to do my master thesis

in CMOS image senor. During my academic curriculum I did research about CMOS image

sensor to get more insight about them and wrote couple of report about it. The thesis project

combines my motivation and challenges involved for accurate measurement, so the objective

of my thesis work is to standardize measurement procedure for characterization of CMOS

Image Sensor. This work presents standard procedure for measurement of characteristic

parameters of CMOS image sensor.

As a part of internal project at Caeleste CVBA, Mechelen, Belgium, we performed various

measurements and testing to improve and upgrade the measurement procedure for key

characteristic parameters that includes quantum efficiency (QE) and responsivity, noise, non-

uniformity, dark current, linearity, full well capacity, conversion gain, modulation transfer

function (MTF) and image lag of CMOS image sensor, also upgrading software library and

hardware to tools for fast and accurate measurements.

The project started with characterizing the LED Light source that is used for performing

measurement on CMOS image sensor, as light source is one of the most important device used

during measurements of imager. Stability, spatial homogeneity and spectral response are key

parameters of light source and knowledge about these parameters assisted in accurate

measurements on CMOS image sensor.

This project also addresses the influence and limitations of instruments, environmental

condition and interfacing devices on measurement results. The second last chapter of this report

consist of standard measurement procedures for all the characteristic parameters.

Thesis Organization
This thesis report consists 6 chapters. The first chapter gives an introduction about this project

which illustrates the objective and motivation for this project. Then Chapter 2 gives necessary

background information for this project which includes basic overview of CMOS image sensor,

the working principle of pinned photodiode and working and timing operation of conventional

4T pixel architecture. Chapter 3 elaborate on importance of LED light source and its

characterization and draws conclusion about present light source which will be helpful in

building new improved light source at Caeleste. It is followed by Chapter 4 which explains all

the characteristic parameters for which the measurements are performed and how they define

the performance of the CMOS image sensor. Then Chapter 5 includes all the measurement

12

procedure that we at Caeleste performed and standardized for characterizing CMOS image

sensor that Caeleste design. Chapter 6 contains conclusions of the thesis and the future work.

13

 Chapter 2

Overview of CMOS Image Sensor
This chapter gives a brief introduction of the CMOS image sensor and 4T CMOS active pixel

sensor which is followed by brief explanation about pinned photodiode and its structure in

Section 2.1. Then section 2.2 discusses 4T APS architecture in detail and explains it’s working.

Section 2.2.1 introduces two electronic shutter mode for CMOS image sensor: Global shutter

and Rolling shutter mode.

2.1. Background of CMOS image sensor
CMOS Image Sensor (CIS) are semiconductor device used for making digital camera. They

detect information in form of light or any other electromagnetic radiation and create image that

represents the information. CMOS image sensors consist of integrated circuits that sense the

information and convert it into equivalent current or voltage which is later converted into digital

data.

Figure 2.1-1- Physical model of a camera.

In 1967, Weckler proposed the operation of charge integration on a photon-sensing p-n junction

which was treated as the fundamental principle of CMOS image sensor [1]. This charge

integration technology is still being used in the CMOS image sensors. Shortly, in 1968,

Weckler and Dyck proposed the first passive pixel image sensor [2]. In 1968, Peter Noble

described the CMOS active pixel image sensor and this invention laid the foundation for

modern CMOS image sensors [3]. Yet one had to wait until the 1990s solving the limitations

of CMOS technology for active pixel image sensors to develop rapidly [4].

 In modern days CMOS image sensor have over taken CCD’s in most of the fields. CMOS

image sensor as an integrated technology offers wide range of functionality, fast read out, low

power consumption, low cost and some better characteristics parameters. Although CCDs had

excellent imaging performance, their fabrication processes are dedicated to make photo sensing

elements instead of transistors and hence it is difficult to implement good performance

transistors using CCD fabrication processes. Therefore, it is very challenging to integrate

circuitry blocks on a CCD chip. However, if the similar imaging performance can be achieved

using CMOS imagers, it is even possible to implement all the required functionality blocks

together with the sensor, i.e. a camera-on-a-chip, which may significantly improve the sensor

performance and lower the cost. In 1995, the first successful high-performance CMOS image

sensor was demonstrated by JPL [5]. It included on-chip timing, control, correlated double

sampling, and fixed pattern noise suppression circuitries.

14

Active pixel sensors are state of the art implementation of CMOS image sensor, they are

integrated circuit consisting of an array of pixels and signal processing unit. They are discussed

in detail in the following section. This document addresses important characteristic parameter

of a CMOS image sensor and test methodology to compute and evaluate them. Ideally CMOS

image sensor should have 100% Quantum efficiency, high frame rate, low noise, linear

response, no optical cross talk and no image lag [6].

2.2.Pinned Photodiode
Photodiode is a semiconductor device that converts light into current. Photodiodes works on

the principle of photoelectric effect which states that when a photon with sufficient energy is

incident on a photodiode it creates electron-hole pair. So these free carriers can be swept with

an electric field which results in current in the diode. Pinned photodiode is a variation in

photodetector structure with large depletion region, that is currently used in almost all CCD’s

and CMOS image sensor due to its low noise, low dark current and high quantum efficiency

[7].

Pinned photodiode (PPD) has p+/n/p regions with shallow P+ implant in N type diffusion layer

over a P-type epitaxial substrate layer refer Figure 2.2-1. Pinning, refers to fermi level pinning

or pinning to a certain voltage level, or also forcing or preventing of fermi level/voltage from

moving in energy space [8] [9]. A PPD is designed to have the collection region which deplete

out when reset. As the PPD depletes it becomes disconnected from the readout circuit and will

drain all charge out of the collection region (accomplishing complete charge transfer). The

major effect is that the diode can have an exact “empty” state, and allows therefor to do

“correlated double sampling” (CDS) in a simple way, cancelling the KTC noise. Also the p+

pinning layer decreases dark current by preventing interface to be depleted and also by

absorbing the carriers due to surface generation and preventing them to reach the depletion

region. When you design the depletion of the PPD to deplete at a certain voltage you are pinning

that PPD to that voltage.

Figure 2.2-1- Cross section of PPD structure. Fundamental Characteristics of a Pinned

Photodiode CMOS Pixel [10].

2.3.4T Active Pixel Sensor Architecture
Modern CMOS image sensor uses 4T active pixel sensor system architecture for photo sensing

and read out. Earlier CMOS image sensor used to have just photodiode in the pixel for photo

charge collection and then came the passive pixel sensor with a photodiode and a switch for

row select in the pixel with a column amplifier, the main advantage of PPS was small pixel

size but the slow column read out and large noise resulted in design of APS [11]. APS consist

of a photodiode, a switch and a pixel level amplifier which result in fast read out and low noise.

There are two common architectures for active pixel sensor 3T and 4T pixel, the difference

seems to be of a single transistor but there is a significant difference in their performances. The

difference will be discussed in the following section which describes design and working of 4T

a pixel. Figure 2.3-1 shows schematic diagram of a 4T pixel. It consists of a p+/n/p pinned

15

photodiode, a transfer gate TG to transfer charge from photodiode to floating diffusion node

FD of capacitance CFD to store charge from the photodiode, with a reset transistor to reset the

FD node after every read out, a source follower to isolate sense node from the column bus

capacitance and a row select switch. The difference between the 3T pixel and 4T pixel is the

transfer gate, which separates photodiode from floating diffusion node or storage node. Hence

4T pixel enables signal buffering that allows to perform integrate while read operation: read

out the signal of previous frame while integrating for next frame, which will improve read-out

speed and SNR. Also unlike 3T pixel, 4T pixel enables implementation of correlated double

sampling CDS which is a useful technique to eliminate reset noise and will be discussed during

4T pixel operation. The other advantage of transfer gate is that it prevents crosstalk between

neighboring pixel which also mitigate blooming (overflow of charge to neighboring pixel when

pixel saturates) which is a major disadvantage in CCD’s [12].

Figure 2.3-1- Schematic of CMOS 4T APS with PPD.

The operation and timing of 4T APS is shown in Figure 2.3-2. First step starts with integration

period during which photodiode generate charge according to incident photons and at the same

time FD node is reset so that new read out is not influenced by any charges from previous read

out, which also gives the reset signal. Now the transfer gate is turned ON and all the charges

accumulated in photodiode are transferred to floating diffusion node and then signal is sampled

[13] [14] [15] [16].

16

Figure 2.3-2- (a) Operation of 4T APS, (b) Timing diagram of signals.

There are certain sampling techniques used during read out of signal to improve the

performance of the image sensor. In CDS technique the pixel is read out twice, once for the

reset signal and once for the sample signal and the difference between the two values is the

signal value. This technique has quite some advantage in performance of CMOS image sensor,

not only it eliminates reset/KTC noise but also suppress 1/f noise (only if it slows that is

correlated) [17] [2.17]. The timing diagram in Figure 2.3-2-(b) shows the CDS read out

technique in which reset signal is read out and then after transfer of charge the sample signal

is readout. The other sampling technique is correlated multiple sampling; in which both reset

and signal levels of pixel outputs are sampled for multiple times and summed up, and the

difference of the average of the two levels is taken as signal value. This technique helps in

reducing thermal and RTS noise refer [18] [2.18] but increases read noise.

2.3.1.Electronic shutter modes
CMOS image sensor can operate in two types of electronic shutter modes namely global shutter

mode and rolling shutter mode. In rolling shutter mode pixels are addressed row by row i.e.

pixels of one row are exposed/reset simultaneously and then of the next row and so on. This

mode of operation causes motion artifact in images, like moving blades of a fan or a helicopter,

this problem can be solved in global shutter mode. In global shutter mode all the pixels of the

imager are exposed/reset at the same time and the charge from each row is stored and later all

the charges are read out row by row. Figure 2.3-3 shows the timing diagram of both the modes

of operation [19] [2.19].

(a) (b)

17

Figure 2.3-3- Working principle of (a) Rolling shutter mode and (b) Global shutter mode [19].

There can be many variations in the pixel architecture depending on the requirement and

specification, with the current technology it is possible to design digital pixel sensor which

include pixel level ADC. There are various trade-offs between fill factor, read out speed and

size of the pixel that leads to the choice for pixel architecture.

(a) (b)

18

 Chapter 3

LED Light Source
Light emitting diodes (LEDs) offer a number of advantages over conventional light sources,

including reduced power consumption, better spectral purity, and longer life time and lower

cost. With the rapid development of LED industry during the past decades, LEDs have become

popular in an increasing amount of applications and are considered as key replacements for

conventional light sources.

The LED-array light sources are used for image sensor characterization; it is essential to know

their specifications. LED light source key characteristics are spatial uniformity, temporal and

thermal stability and spectral response and this information will help while characterizing

CMOS image sensor. Caeleste uses its in-house customized LED light source; the project

started with characterizing the LED light source and the measurement results helped in

designing improved LED light source. It is very important to have a stable and uniform light

source as it directly affects the measurement results of CMOS image sensor. This report present

measurement procedure and results that were performed to characterize the LED light source.

3.1.Stability
Light source should emit constant optical power with constant Intensity. There should be no

variation in light intensity with time and temperature i.e. light source should have temporal and

thermal stability. LED’s takes some time to get stable get thermally stable; so it is important to

know how much time LED light source takes to get stable. Additionally, LED light source

should not have any hysteresis effect.

1. Measured photocurrent of reference Hamamatsu photodiode which can be converted

into light intensity for 20 min with a step of 10 seconds at a distance of 20cm between

LED light source and photodiode. The intensity of LED source can be set by supply

current.

2. The measured photocurrent (A) can be converted into light intensity (W/cm2) by using

conversion factor for a specified light source wavelength available from standard

datasheet.

3. Simultaneously measured the temperature of the light source using pt-1000.

Figure 3.1-1- Intensity of LED light source in function of time.

In
te

n
si

ty
 (

W
/c

m
2
)

Time (s)

19

Figure 3.1-2- Temperature of light source in function of time.

3.2.Spectral Response
It is defined by the spectral response of the LED’s. Generally, LED’s manufacturers provide

this information. For characteristic measurement of quantum efficiency, it is important to know

the spectral response of the light source.

1. Replaced the lamp of the monochromator with the LED light source.

2. Measured the photocurrent by sweeping the wavelength of the monochromator with a

step of 1nm.

3. This measurement was repeated for Red, Blue and Green light source.

Figure 3.2-1- Spectral response of Blue, Green and Red LED light source.

Table 3.2-1- Spectral specification of LED light source.

LED Light Source Peak Wavelength Full Width Half Maximum

Red 632nm 16nm

Green 517nm 30nm

Blue 465nm 22nm

T
em

p
er

at
u

re
 (

ºC
)

Time (min)

20

3.3.Spatial uniformity
It is one of the most important characteristic of any light source. LED light source should

be spatially uniform i.e. equal level of intensity in space at equal distance from the source.

1. Measured spatial photocurrent of reference Hamamatsu photodiode by scanning the LED

light source using precision stepper motor, with a step size of 0.5mm.

2. A 2×2cm2 3D plot of spatial light intensity is generated for the light field.

3. The measurement was performed at different distance at 10cm, 20cm and 30cm between

light source and photodiode.

Figure 3.3-1-3D and 2D plot of Spatial intensity of the LED light source at (a) 10cm, (b)

20cm and (c) 30cm distance between monochromator output and photodiode.

(a)

(b)

N
o

rm
alized

 In
ten

sity

N
o
rm

alized
 In

ten
sity

N

o
rm

alized
 In

ten
sity

(c)

21

3.4.Conclusions
From the measurement results it can be concluded that light source requires about 10 minutes

with intensity variation of 1nW/cm2 to get stable which is in agreement to time taken by light

source to get thermally stable. Also from spatial uniformity results it seems that light source

gets more uniform as the distance from the light source to photodiode is increased and for 30cm

distance the variation is less than 1% for 2×2cm2 of area which is comparable to size of the

image sensors at Caeleste. These measurements where performed at earlier stage and based on

the result Caeleste designed an improved light source with optical feedback and PID controller,

yielding much better accuracy and stability.

22

 Chapter 4

Characteristic Parameter of CMOS Image Sensor

4.1.Quantum Efficiency and Spectral Response

4.1.1.Definition
Quantum efficiency (QE) is one of the most important characteristics of any electro-optical

device including the CMOS image sensor. QE is the ratio of average number of electrons

generated in the pixel (µe) to the average number of impinging photons (µp) on the pixel during

exposure time.

QE(λ) =
μe

μp
 (4.1-1)

When a photon is absorbed by PPD, it generates free carriers (electrons-holes) and these free

carriers contributes to the conductivity of the material and the phenomena is known as

photoelectric effect. In general, PPD have two modes of operation: Photovoltaic mode, where

the electron-hole pair is converted to electron current by the built-in electric field and Photo

resistive mode where the free carrier(s) increase the overall conductivity of the material and

QE quantifies the relation between photons absorbed and free carriers generated.

Figure 4.1-1-(a) Electron-hole generations by photons with different wavelength, (b) Photon-

generated carriers by a p-n junction/photodiode.

In the field of CMOS image sensors one typically considers total quantum efficiency including

fill factor i.e. QE that is referred to the total area occupied by an image sensor single pixel (not

only the light sensitive area). QE is expressed in units of percent or simply a value from zero

to one.

Ideally for image sensor QE should be as 100 percent i.e. 1 electron-hole pair for every

impinging photon; but in reality the photoelectric phenomena in PPD is not perfect there are

some limitations associated to it. The first limitation is the loss of impinging photon which can

be due to various optical phenomena like photons reflection of the surface or photons

absorption by the layers above the depletion region and hence the impinging photons does not

reach the photosensitive area of the pixel and thus QE of the system decreases. Second

limitation is the inefficiency of the photodiode to collect all the electron-hole pair generated by

the impinging photons, this inefficiency is result of free carrier’s generation outside the

depletion region of the PPD. As the absorption of impinging photons depends upon absorption

coefficient of silicon which depends on its wavelength, so photons with longer wavelength will

penetrate deep inside the PPD and the free carrier generated by these photons can be outside

23

the depletion region and hence it will be difficult to collect those carriers’ and this will result

in lower QE.

Another important characteristic of image sensor is called Spectral Response (SR) or Spectral

Sensitivity and it determines how much photocurrent is generated by the image sensor per

impinging photon of given energy and it is expressed in units of A/W. Both QE and Spectral

response of a photodiode depends on the wavelength of impinging photons hence the term

spectral [20].

SR [A/W] =
QE∙λ∙q

hc
 (4.1-2)

Where,

λ: Wavelength of impinging photon [nm]

q: electron charge = 1.602*10-19 [C]

h: Planck’s constant = 6.626*10-34 [J·s]

c: speed of light= 2.99792*1010 [cm/s]

4.1.2.Measured value versus Theoretical value
Nearly every CMOS image sensor today is fabricated using Silicon material, therefore spectral

properties of the image sensor are governed by Silicon and the spectral response of PPD is

defined by spectral response of Silicon, hence QE and SR are fabrication process dependent.

With the information on absorption coefficient of silicon, thickness of silicon and wavelength

of the impinging photons, designer can estimate the QE value of the image senor at designing

stage. QE is often measured including fill factor (FF) and designer know how much light

(photons) will reach pixel depending on pixel design, so while designing QE value can be

estimated [21] [4.2].

Also there are standard set of results based on various test and measurement performed for

different pixels to evaluate QE and SR. So if technology, fabrication material and thickness of

the material is known, QE of the image sensor can be estimated.

The other way to crosscheck the accuracy of measurement result is to verify the result from

alternative method by computing QE from CVF (Charge to voltage factor) data available for

the image sensor. This method is described in the measurement procedure.

4.1.3.Fringing effect or Etaloning effect
In measurement results; QE and SR suffer from fringing effect as shown in Figure 4.1-2, this

is due to the optical phenomena that occurs within different layers of PPD.

Figure 4.1-2- Fringing effect in QE and SR measurement result.

400 450 500 550 600 650 700 750 800
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Wavelength (nm)

S
p

e
c
tr

a
l
re

s
p

o
n

s
e
 (

A
/W

)

25

30

35

40

45

50

55

60

Q
u

a
n

tu
m

 E
ffic

ie
c
n
y
 (%

)

24

When a photon with a certain wavelength hits a PPD, it transverse through SiO2 layer or epitaxy

layer before reaching depletion region. Spectral fringing is result of the interference pattern

created by photons multiple refection back and forth within this layer which is due to difference

in reflective and transmission ability of this layers and the layers behaves as etalons; they don’t

allow 100% transfer of photons [22] [4.3]. For FSI, fringing is significant in oxide layer and

for BSI sensor it is due to epitaxy layer. The Figure 4.1-3 describes the etaloning phenomena

for light transmitting through two surface separated by air, similar phenomena occurs when

impinging photons transmit through different layers in the pixel [23].

Figure 4.1-3- Principle of etalons and its transmission curve [24].

4.2.Photo Response Curve

4.2.1.Definition
Photo response of an image sensor is the measure of sensor ability to convert optical incident

power (number of impinging photons on the sensor for a given integration time) into electrical

signal (gain of the system multiplied by the number of electron generated). It is a function of

wavelength.

Photo response curve gives a good insight for many characteristic parameters of CMOS image

sensor like CVF from known QE value, Non-linearity, Saturation voltage and full well capacity

of the image sensor. Photo response is generally performed for specific spectral wavelength

(mostly at peak response wavelength).

4.2.2.Non-Linearity
Ideally CMOS image sensor should have a linear behaviour i.e. it should respond linearly with

incident light (photons) but due to nonlinear devices in the pixel and in the signal processing

unit, the sensor deviates from linear response. The major source of non-linearity in the image

sensor comes from the source follower MOSFET in the 4T pixel design, as it is used as trans-

impedance amplifier and its gain depends on the source resistance which induces non-linearity

[25]. Other transistors are just used as a switch and thus do not contribute much to non-linearity

of the image sensor. Other sources of non-linearity are [26]:

1. Image lag.

2. The non-linearity of the photodiode or of the floating diffusion.

3. Non-linearity’s in the further downstream analog processing and multiplexing.

Non linearity can be classified into Integration non-linearity (INL) and Differential non-

linearity (DNL). INL is the measure of maximum deviation or error from the ideal response

25

and DNL quantifies deviation of two consecutive values corresponding to ideal values. In case

of image sensor only INL is calculated as there are no DAC used in imager for signal

processing. So photo response tells the response of the sensor for incident optical power and

ideally it should be linear and INL is evaluated from the actual response to the ideal response

of the sensor [27].

NL[%] =
Emax

FS
× 100 (4.2-1)

4.2.3.Full well capacity (FWC)
FWC defines/tells the charge generating/storing capacity of the pixel and the state when pixel

reaches its FWC is called as saturation. Image sensors absorb photons and generate free carriers

(electrons-hole), depending on the way PPD is designed. Usually a PPD has a wide depletion

region where all the free carriers are collected and the amount of charge that can be collected

by PPD depletion region defines the FWC. The other way to define FWC is the capacity of

floating diffusion to store charges and of a good pixel design both the quantity should be equal.

So according to design there is a limit to number of free carriers that can be generated in PPD

and it should be equal to amount of charge that can be stored on the floating diffusion.

FWC can be determined by photo response of the image sensor, but first it is important to

define the full well capacity. For the measurements at Caeleste, FWC is defined w.r.t saturation

level of the image sensor; so it is defined as the point of intersection best line fit for 10% and

90% saturation level and best line fit.

4.2.4.Saturation (Vsat)
A pixel is said to be saturated when it reaches its FWC for incident optical power and the

corresponding output voltage is called as saturation voltage.

FWC = Vsat ∙ Ceff (4.2-2)

4.2.5. Charge to voltage factor (CVF)
Charge to voltage factor also known as conversion gain is the conversion factor that tells how

much output voltage (Vsignal) is generated corresponding to number of electrons (µe) generated

by the pixel. It is defined either at floating diffusion or at the output of the image sensor. The

conversion gain is one of the most important parameters of a CMOS imager pixel. The linearity

and uniformity of the pixel response, light sensitivity, and the pixel noise are all influenced by

its value and distribution.

CVF [μV/e−] =
Vsignal

μe
 (4.2-3)

It can be calculated from photo response curve; as the curve gives the relation between output

voltage and incident optical power (i.e. the number of photons). The number of photons can be

converted into number of electrons from the QE value of the pixel at that wavelength; which

results in relation between the output voltage and the electron (charge) i.e. the CVF. The CVF

can be classified as internal and external conversion factor. Internal conversion factor take path

gain into the consideration which allows Caeleste to compare different pixel design,

independent of the surrounding circuit and external CVF is the property of the chip, which is

important for their customers.

26

An alternative method used for determining CVF is mean-variance curve; it is based on basic

law of physics. The method employs the fact that the photon shot noise (PSN) level is

proportional to the square root of the signal level [28].

σn = √q. Vsignal (4.2-4)

Where n is the photon shot noise and Vsignal is the output signal and q is the photo charge.

Hence CVF can be determined as slope of curve between Noise (Variance) and mean signal.

4.3.Modulation Transfer Function

4.3.1.Definition
MTF (modulation transfer function) is the image sensor’s ability to transfer contrast at

particular spatial frequency. It is a direct measure of senor image quality and resolution. Ideal

response of a pixel is an impulse of certain width defined by pixel pitch, but pixel suffers from

optical cross talk i.e. pixel shares its information with neighbour pixels. Hence this results in

more or less a Gaussian response rather than an impulse response. This optical cross talk can

be quantified by MTF which is basically FFT of the pixel response. Note that, although the

term is “optical” crosstalk, the underlying mechanisms are both optical and electrical in nature

[29].

Figure 4.3-1- Optical cross talk in a single pixel.

To compute frequency response, the pixel can be exposed to alternating black/white lines

pattern with a line thickness equal to pixel pitch. The special situation where the black/white

spatial line frequency corresponds exactly to 2 times pixel pitches is called the “Nyquist

frequency” (fN). The MTF at Nyquist frequency is often used as an optical crosstalk measure

[30].

4.3.2.Source of cross talk
1. Lateral diffusion when incident light (photons) bounces around inside the chip.

2. Optical crosstalk due to different optical phenomena like diffraction, refraction,

scattering, interference and reflection of light (photons).

3. Electrical crosstalk results from photo-generated carriers having the possibility to

move to neighboring charge accumulation sites (pixel).

4. Other physical limitation like the limit of the main (cameras) lens or angle of incidence

of incident light also contribute to crosstalk.

27

4.3.3.Slanted Edge method
There are several methods to measure the MTF of the image sensor like Sine target method,

knife edge method but this method suffers from drawbacks of long computation time and also

need large number of images respectively. But the slanted edge method is fast and requires just

1 image to compute MTF. The method is based on ISO 12233 standard; consists in imaging an

edge onto the detector, slightly tilted with regard to the rows (or the columns). So a vertically

oriented edge allows obtaining the horizontal Spatial Frequency Response (SFR) of the sensor.

In that case, the response of each line gives a different edge spread function (ESF) due to

different phase and the ESF data is used to compute the MTF [29].

4.3.4.Correct Image and Lens Setting
Images that are captured suffer from non-uniformities and offset. So to measure MTF

accurately, captured images need to be corrected first and to remove this artifact flat-filed

correction is applied.

C =
(Edge−Dark)∙m

(Light−Dark)
 (4.3-1)

Where,

C: Corrected image

Edge: Raw image of target edge.

Dark: Dark frame.

Light: Flat-field light image.

m: Average value of (Light-Dark)

It is also important that the slanted edge is located at the center of the image and the center of

lens; the image contrast and resolution are typically optimal at the center of the image, and due

to imperfect lens; deteriorate toward the edges of the field-of-view. Another important point to

consider is that while capturing images using Lens, the image should be perfectly focused

because an unfocused image degrades the MTF because of aliasing and can lead to phase-

reversal (i.e. black and white segment get reversed). Basically any optical aberration degrades

MTF of the system [31] [32].

4.4.Noise and Non-uniformity

4.4.1.Definition
Every integrated circuit suffer from noise and so do CMOS image sensor. Image sensor convert

light information into electrical signal and while processing information CMOS image sensor

suffers from two types of noise, temporal noise and spatial noise. Noise is any fluctuation in

signal value and noise waveform can be conventionally modelled as random process.

Mathematically noise power can be estimated by computing variance of the signal. Therefore,

variance of the fluctuation in signal gives the mean signal and thus mean number of electrons

[33].

Before measuring noise, it is important to know what type of noise comes from which part of

the sensor. Below in the Figure 4.4-1 a CMOS image sensor based on standard 4T pixel

architecture is shown and it describes what kind of noise originate from specific part of the

pixel. This Figure 4.4-1 only indicates major source of noise, there are other components as

well which contribute to the total noise of the system.

28

Figure 4.4-1- Major Noise sources in a 4T pixel PPD.

4.4.2.Temporal Noise
Temporal Noise is variation in pixel response for constant illumination over a period of time.

It can be evaluated by computing the standard deviation of pixel response for every pixel

through number of frames taken over period of time for specific illumination and then taking

mean of all the pixel values of the image sensor. Temporal noise consists of following noise

components:

1. Johnson noise of all resistive components (Thermal noise).

2. 1/f noise of the MOS transistors (mainly from the source-follower in CMOS pixels).

3. KTC noise (if not cancelled by CDS).

4. Quantization noise of the ADC.

5. EMI and other interference.

6. Timing jitter.

7. Any other noise contribution of extra electronics on-chip or off-chip.

To estimate the noise in the image sensor, it is important to model noise mathematically. The

most often used random variable in noise analysis is Gaussian random variable. It is used to

describe the magnitude distribution of a large variety of noise sources, including thermal noise,

shot noise and 1/f noise. If noise signal is a Gaussian random variable, then the white noise

process is a white Gaussian noise (WGN). Two of the most important noise processes in

integrated circuits, thermal and shot noise, are modelled as WGN processes [33].

4.4.2.1.Photon shot noise

It is the noise due the statistical variation on generated/excited electron-hole pairs due to

random arrival of impinging photons under illumination and it obeys a Poisson statistic.

Therefore, magnitude of the photon shot noise (n) equals to the square root of mean signal

(Vsignal) [28]:

𝜎n = √q ∙ Vsignal (4.4-1)

It is possible to compute conversion gain/CVF from this relation -

CVF =
𝜎n

2

Vsignal.A
 (4.4-2)

Where, A is the voltage gain of the signal processing unit.

29

It is the most fundamental noise of any photonic system as it comes from the basic law of

physics and not from the image sensor design. Its square root dependency on illumination level

is utilized to characterize the image sensor. The conversion gain derived from this relation is

very accurate as it is not influenced by CMOS image sensor design.

4.4.2.2.Dark current shot noise

It is the noise of CMOS image sensor under no illumination. Dark current shot noise is result

of thermally random generation of electrons-hole pair in dark i.e. dark current and it depends

exponentially on temperature. As it also follows poisons statistics dark current shot noise is

given as:

σn = √Vdark (4.4-3)

4.4.2.3.Read Noise

Read noise or temporal noise in dark is the inherent noise of a sensor and is equal to noise level

under no illumination. It is result of various noise sources like- KTC noise, ADC noise,

temporal row noise and interference pattern. It is measured for very short integration time (tint)

to avoid DSNU and is measured in dark to avoid photon shot noise on temperature stable

system. It is calculated by evaluating temporal signal variance over series of frame for

individual pixel and then by taking the average over all the pixels, which tells noise over image.

4.4.2.4. Reset Noise

It is the thermal noise of the reset switch sampled over capacitor and also known as “KTC

noise”. It is the noise sampled on the floating diffusion capacitor Cpd due to charge

redistribution and uncertainty of charge on the capacitor when the reset switch is turned

ON/OFF. A reset transistor and capacitor can be modelled as a resistor in series with a switch

and a capacitor as shown in Figure 4.4-2 [34]. But in modern CMOS image sensor using CDS

technique, the reset noise is cancelled out. Matematically reset noise is given as:

Vres = √
KT

Cpd
 (4.4-4)

Where,

Vres: Reset noise voltage.

K: Boltzmann constant.

T: Absolute temperature

Cpd: Diffusion capacitance or floating node capacitance.

Figure 4.4-2- (a) nMOS transistor modelled as switch and a resistor in series with floating

diffusion capacitor, (b) KTC noise sampled when switch is opened and closed.

(b) (a)

30

4.4.2.5.1/f Noise

1/f noise also known as flicker noise is the noise power density which is inversely proportional

to frequency. 1/f noise depends upon MOS technology and with the downscaling of transistors

it is becoming dominant source of read noise. The main sources of 1/f noise in CMOS image

sensor are the MOS transistors. It is a result of random fluctuations in charge carrier due to

random capture and emission of carriers by traps in the gate oxide and also due to fluctuations

in mobility carrier. These two effects are correlated and are considered together during noise

modelling [35]. There are different models to quantify 1/f noise of which K.K Hung model [36]

is most commonly used.

4.4.3.Spatial noise
Spatial noise is the variation of pixel response within a frame i.e. pixel to pixel variations which

are steady over time. This are statistical variations in “offset” and “gain” of the pixel over a

frame and are fixed at constant illumination therefore referred as fixed pattern and hence fixed

pattern noise (FPN). Spatial noise can be evaluated by computing coefficient of variation for a

frame.

4.4.3.1. Fixed pattern noise

Fixed pattern noise is the noise dark and is often considered to be as an offset because the

variations are fixed for a given pixel at fixed integration time. FPN in dark is result of mismatch

in transistors of a single pixel and mismatch of column-level transistor of the image sensor and

also due variation in dark currents of the different pixels of the image sensor. Generally, FPN

due to mismatch in transistors is cancelled during correlated double sampling (CDS) performed

while reading out pixel signal. FPN in dark due to dark current signal is often referred as dark

signal non uniformity (DSNU) which represents variation in dark signal of pixels in a pixel

array.

4.4.3.2.Photo response non-uniformity

Photo response non uniformity (PRNU) also called as “gain” noise is result of variation in gain

value (photo-responsivity) of a pixel in a pixel array and it is proportional to photo illumination.

There are several components of PRNU, primarily it is due to imperfection in photodiode

during fabrication process. The imperfection in fabrication process can result in different value

of diode junction capacitance, which result in variations in depletion width and hence variation

in pixel photo response. Also mask misalignment results in different size of photodiodes which

result in variation in active region of pixels in a pixel array [25]. It is primarily due to

photodiode capacitance variation, photodiode collection volume variations, variation in device

gain and capacitance variations.

It is important to understand that while measuring PRNU, FPN in dark (DSNU) is also

included. FPN in dark due to transistor mismatch is supposed to be cancelled during CDS and

to eliminate FPN due to dark current, either FPN in dark need to be subtracted or measurement

should be performed by keeping minimum integration time to make DSNU negligible.

4.5.Dark current

4.5.1.Definition
Dark current is the small leakage current that flows in a photosensitive device under dark

condition and in CMOS image sensor it is due to random generation of electrons and holes in

PPD. Dark current is a result of many different semiconductor physical phenomena that occurs

31

in the PPD, these phenomena’s will be discussed further in this section. But dark current is not

just restricted to PPD, FD and TG also contribute to total dark current of the pixel. Dark current

is the major source of noise in CMOS image sensor, it directly affects the signal to noise ratio

(SNR) of the image sensor as it defines the lower limit of the signal that can be detected. Dark

current itself does not create problem for image sensor as it can be calibrated by performing

“Dark frame subtraction” from the signal frame but it is temporal variability and spatial non

uniformity of dark current which introduces noise in the system. In high speed cameras the

dark current is negligible because of the very short integration time and then read noise

dominates.

4.5.2.Mechanism
Dark current is PPD response under no illumination. Its generation depends on fabrication

technology and design of the CMOS imager, of which major factors influencing dark current

are silicon defect density, the electric field of the photo-sensing element, and operation

temperature. There are several components of dark current which are result of different physical

mechanism. Following section will discuss all the mechanism briefly.

4.5.2.1.Generation center

Generation center is a physical location which is responsible for random generation of electron

and holes that result in dark current. This generation centers are result of impurities, dislocation

faults, vacancies, mechanical stress, lattice mismatch, interface states etc., which are side effect

(by-product) of fabrication process. The physical size of a generation center is in the order of

1-2 inter-atomic distances.

4.5.2.2.Thermal generation

Thermal generation and recombination is a common phenomenon in any opto-electrical

devices. In absence of photons (light) the thermal generation-recombination of carriers is a

result of impurities and defect in crystal. In silicon trap assisted generation-recombination (GR)

is a dominant phenomenon compare to other generation-recombination mechanism. Due to

impurities and defect in crystal, some electrons have energy above fermi level which result in

indirect transition of electron in conduction band and thus contribute to dark current. The

electrons in transition between bands passes through a state created in the middle of the band

gap by an impurity in the lattice. The impurity state can absorb differences in momentum

between the carriers, and so this process is the dominant generation and recombination process

in silicon and other indirect bandgap materials [37]. Also PPD is usually reverse-biased

therefore the minority carrier concentration is lower than the equilibrium concentration hence

generation process is dominant over recombination process to re-establish the equilibrium. This

complete process can be characterized by Shockley–Read–Hall (SRH) process; hence the rate

of electron-hole pair generation inside the depletion region is given as [38]:

 G = [
σpσnϑthNt

σnexp(
𝐸𝑡−𝐸𝑖

𝐾𝑇
)+σpexp(

𝐸𝑖−𝐸𝑡
𝐾𝑇

)
] (4.5-1)

Where,

σn: electron capture cross section,

σp: hole capture cross section,

υth: thermal velocity of either electrons or holes (assuming they are equal),

Nt: density of the generation centers (silicon defects),

Et: defect energy level,

32

Ei: intrinsic energy level,

K: Boltzmann’s constant and

T: absolute temperature.

The dark current caused by thermal generation in the depletion region is:

 Jgen = ∫ q G dx
W

0
 ≈ qGW =

qniW

τg
 (4.5-2)

Where,

W: Depletion width,

q: electronic charge,

ni: intrinsic concentration, and

τg: generation life time.

As shown in Eq. (4.5-2), the dark thermal generation current is proportional to the intrinsic

concentration ni. The temperature dependence of ni is given by [3.3]:

 ni = √NcNV exp (−
Eg

2KT
) (4.5-3)

where Nc and Nv are the carrier densities and Eg is the energy bandgap. By combining both Eq.

(4.5-2) and Eq. (4.5-3), it can be concluded that the temperature dependency of thermal

generation current is proportional to the exponential value of a half silicon bandgap.

4.5.2.3.Surface generation

The phenomena behind surface generation is same as of thermal generation, the only difference

is the location of the traps, defects or impurities. Surface generation is result of imperfection in

Si-SiO2 interface of PPD, hence the lattice structure becomes non-uniform at the interface

which results in traps at the surface. There are different measures taken to reduce surface

generation, p+ implant is one of the technique i.e. PPD is not completely depleted a thin p+

layer is left, so if there is any surface generation the carriers will be absorbed in the thin p+

layer itself [39].

4.5.2.4.Tunneling

It is a common phenomenon that occurs in heavily doped p-n junction which result in thin

depletion layer. During tunneling process the valance band carriers “penetrates” through the

bandgap into the conduction band instead of overcoming the barrier see Figure 4.5-1. This

phenomenon may occur in PPD as they are heavily doped and under high electric field carriers

can tunnel through p-substrate to n+ depletion region and contribute to dark current of the pixel.

As more doping result in more impurities and thus more dark current, therefore PPD are not

completely depleted during doping as it increases dark current, and a thin P layer between the

Si-SiO2 keeps the dark current in control by preventing the free carriers to go in depletion region

[37].

33

Figure 4.5-1- Energy band diagram of tunnelling process of a heavily doped p-n junction [40].

Avalanche multiplication/Impact ionization is a rare phenomenon and is most unlikely to occur

in 4T pixel PPD as the biased applied to the pixel is not strong enough to initiate the

phenomena.

4.5.2.5.Diffusion current

It is the current that is a result of difference in concentration level in two regions in a p-n

junction diode, so whenever one region is at higher potential than other than there is net

movement of carriers from higher concentration to lower concentration and this movement of

charge carrier’s result in current called as diffusion current. Due to heavy doping concentration

in n-layer, the dark current due to diffusion of holes is in negligible. Hence the equation of dark

current due to diffusion current of electrons can be given as [38]:

𝐽𝑑𝑖𝑓𝑓 =
𝑞𝐷𝑛𝑛𝑝0

𝐿𝑛
= 𝑞√

𝐷𝑛

𝜏𝑛
∙

𝑛𝑖
2

𝑁𝐴

Where,

Jdiff: Diffusion current due to electrons,

np0: electron concentration in boundary condition,

Dn: electron diffusion coefficient,

Ln: diffusion length,

τn: carrier lifetime,

ni: intrinsic concentration.

From the temperature dependency of intrinsic concentration ni, the equation shows the

temperature dependency of diffusion current on the exponential value of one silicon bandgap.

4.5.2.6.Dark current from fabrication process

Also most CMOS image sensor uses STI (Shallow Trench Isolation) for decreasing cross talk,

but on other hand the oxide layer of STI creates traps and this traps will release in undesired

trapping and releasing of carriers that will result in dark current and 1/f noise.

34

4.6.Image Lag

4.6.1.Definition
Image lag is defined as memory effect of the pixel due to insufficient charge transfer to floating

diffusion from PPD. In a 4T pixel, the complete transfer of signal charge from the PPD to the

floating diffusion node is critical to the pixel performance in terms of noise and image lag. The

potential profile under the transfer gate must be properly tailored to establish the proper barrier

height between the photodiode and the floating diffusion node to achieve full charge transfer

when the transfer gate is high. The relative position and the geometry of the n-type diffusion

layer of the PPD, combined with the shape and size of the transfer gate directly affect key

device characteristics such as noise, dark current, and image lag [41]. It is like a trade-off

between large full well, low dark current and significant image lag for a 4T pixel designer.

4.6.2.Cause of Image Lag
1. Potential barrier between PPD and TG

Pinned photodiode can be modeled as lumped RC network, hence there is certain time

constant (delay) for charge to deplete through the diode or the potential barrier and if

the pulse applied to transfer gate is smaller than the time constant (delay) then it will

result in residual charge at photodiode therefore the lag in the sensor.

Or,

In a 4T pixel, this is due to the emptying time constant of charge that is limited by the

potential barrier. Charge transfer from Pinned photodiode can mathematically

corresponds to current through MOSFET in sub-threshold or the forward current

through a diode. Hence it requires certain time constant to overcome the barrier and

this emptying time constant can then be directly translated into image lag.

2. Insufficient electric filed

If the applied electric filed to transfer charges is not enough then there will be residual

charges in the pixel which will result in image lag.

3. Trapping effect in TG

It is a common phenomenon in MOSFET, where charge carriers are being trapped at

transfer gate interface i.e. in the channel and this traps can capture free carriers and can

release then anytime which result in Image lag.

4. Large signal level

Large signal can also result in image lag as some electrons can fall back in PPD if the

applied potential to TG is not enough w.r.t large amount of charge [26].

The amount of carriers not transferred obeys a Poisson distribution. Hence if 100 electrons are

not transferred, the uncertainty on that number is 10. This is obvious when considering a

transition from light to dark. The noise of the pixel’s value is the square root of the remaining

charge. One should be aware that it is as well valid for a steady-state situation: although no

apparent image lag is visible, in steady state, as the charges lost by the previous frame are

compensated by the loss of the next frame, the losses are uncorrelated.

35

 Chapter 5

Measurement Procedure Overview
It is important that the reasons for undertaking a measurement are clearly understood so that

the measurement procedure can be properly planned. Good planning is vital in order to produce

reliable data to time and to cost. The planning process should cover aspects such as the

objectives of the measurement, background information, selection of the method, the required

level of accuracy and confidence and finally reporting [42]. The following measurement

procedures are planned for accurate, robust and fast measurements.

The following section includes measurement procedures for all the characteristic parameters

of CMOS Image sensor. Measurements were performed on different samples and prototype

sensors; different characteristics parameters are computed using different standard methods.

The measurements procedures are more friendly with Caeleste working environment, but can

be used to characterize any CMOS Image sensor in general with suitable hardware and software

tool. The tests are performed with different sensor settings to get the more accurate and precise

results, like for some measurements high gain mode is used and for some measurements low

gain mode, some measurements are performed for same integration time and constant light

source intensity and some with changing integration time and changing light source intensity.

Measurement procedures include all the basic information about the characteristic parameter,

image sensor specification and settings, measurement setup and environmental condition under

which measurement procedure is/should be performed. The procedures also suggest alternative

methods to compute characteristic parameter and also to cross check the measurement results.

Measurement procedures includes pictures and graphs for some standard results that may or

may not comply with actual results. All the measurement procedure complies within EMVA

Standard 1288 and MTF measurement procedure is based in ISO 12233 test standard. Along

with creating measurement procedure, the software library and hardware equipment are also

updated for fast and accurate measurements.

36

5.1.Quantum Efficiency and Spectral Response

5.1.1.Objective
Quantum efficiency (QE) is one of the most important characteristics of any electro-optical

device including the CMOS image sensor. QE is the ratio of average number of electrons

generated in the pixel to the average number of impinging photons on the pixel during exposure

time. This document gives brief introduction on quantum efficiency and spectral response,

explains necessary measurement procedures and provides data analysis protocol.

5.1.2.Measurement Background

5.1.2.1.Method Description

In the field of image sensors one typically considers total quantum efficiency: QE that referred

to the total area occupied by an image sensor single pixel (not only the light sensitive area). QE

expressed in units of percent or simply a value from zero to one. Another important

characteristic of a photodiode or image sensor is called Spectral response and it determines

how much photocurrent generated by the DUT per impinging photon of given energy.

Therefore, it is expressed in units of A/W. Both, QE and Spectral response of a photodiode

depend of the wavelength of impinging light. By knowing QE one can derive SR and vice

versa. To estimate quantum efficiency first determine the Spectral Response of the DUT.

Depending on the project two situations can appear:

1. Image sensor design has special QE test structure intended for QE and SR

measurements only.

2. No specialized QE test structure is available within current image sensor project.

5.1.2.2.Specialized QE structure

Dedicated QE structure consists of a set of pixels (referred as QE or ‘real’ pixels) identical to

those of the original sensor’s pixel array in terms of photodiode, transfer gate and metallization

properties. Additionally, QE structure has a set of guard pixels that prevent charge leakage into

the QE pixels from outside. The QE test structure is either a part of the image sensor die (hence,

accessed via sensor’s dedicated bonding pads/pins) or designed as a separate die. Figure 5.1-1

shows typical layout of a QE structure: three pads corresponding to substrate (SUB), QE pixels

(diode) and the guard pixels and the pixel array consisting of real pixels surrounded by guard

pixels. Figure 5.1-2 shows electrical connection of the QE structure. Both, guard and real pixels

are biased with external power supply. Ampere meter is placed into QE-pixel net for

photocurrent measurements.

Figure 5.1-1-Layout of QE test structure (full pixel array is not shown).

37

Figure 5.1-2-QE structure connection diagram.

5.1.3.Measurement Setup

5.1.3.1.List of Equipment

From the explained above it is clear that one needs a monochromatic light source, a calibrated

light intensity radiometer and high precision electrometer for photocurrent measurements. The

setup should be mounted on a rigid optical bench or breadboard in the dark cabinet. Typical

list of equipment employed for QE measurements:

1. DUT/QE structure.

2. Reference detector (Hamamatsu Si reference diode).

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

4. Electrometer (CI-0013 Keithley 6514 electrometer).

5. Monochromator (TMc300).

5.1.3.2.Block Diagram

The test setup for QE measurements is shown in Figure 5.1-3. The setups assume the use of a

monochromator for obtaining QE at various wavelengths whose principle of operation is

explained in detail in Figure 5.1-3. The light from a broadband light source enters

monochromator via its input slit and is then collimated onto a diffraction grating. The latter

splits continuous spectrum into separate wavelengths reflected at different angles. Focusing

mirror collimates this light onto the output reflector, which together with the exit slit outputs

light of one particular wavelength. Light from the output of the monochromator is then

projected onto device under test. Both, monochromator and electrometer are computer-

controlled. In case the measurement needs to be done only at one wavelength, a nearly

monochromatic light source can be used such as LED whose emission spectrum is known. For

this procedure, consider the use of monochromator for obtaining QE and SR spectra in this

document.

Figure 5.1-3- QE measurement setup schematic.

TG TG

A

~2V DC supplyG
U

A
R

D
 p

ix
el

s

“r
ea

l”
 Q

E
p

ix
el

s

“guard”

“diode”

“substrate”

Picoampere meter

38

5.1.3.3.Software Tools

1. Iron Python-based Caeleste software environment.

5.1.4.Measurement Procedure

5.1.4.1.Algorithm

The principle behind QE measurement is that, first measure the current of reference-calibrated

detector as a function of wavelength to determines the intensity (standard conversion table

provided from photodiode manufacturer) of light incident on the structure i.e. irradiance E

(directly tell about the number of impinging photons on the DUT). Then measure the current

of DUT structure for same illumination as a function of wavelength to calculate spectral

response (which tell us about the number of electron generated) and if CVF is known then the

output voltage of the DUT can be converted into number of electrons at the output of DUT.

Now calculate QE as the ratio of number of electrons by number of photons.

5.1.4.2.Procedure

1. Use the Bentham Halogen light source with its dedicated stable current source and

allow it to reach thermal equilibrium for at least 20 minutes after switching it ON. (Do

not switch of the light source until you complete all the measurement.)

2. Select the appropriate slit width at the monochromator exit to get desired bandwidth

of light from Figure 5.1-4. (Refer Table for Slit width vs Bandwidth from

monochromator user manual).

Figure 5.1-4 - Slit width and bandwidth configuration [43].

5.1.4.2.1.Measurement from known CVF

1. Place the reference detector under illumination and measure the current at wavelength

of interest. Use the reference detector calibration data (in A/W) to calculate irradiance

39

E in [W/cm2] from the detector output current [A]. This will result in mean number of

impinging photons (μp).

2. Record exactly the location of the reference detector (within a few mm in X, Y and Z)

and place the DUT to be measured at the same location.

3. Now illuminate the DUT at the same wavelength, capture the image for known

integration time (tint), subtract it from ambient or dark image and measure the mean

output signal [Volts] of DUT. One can evaluate mean number of electron generated

(μe) by using mean output signal and CVF.

Note: It is advisable to take same ROI as size of the reference detector to get accurate result.

5.1.4.2.2.Measurement from dedicated QE structure

1. Place the reference detector in the light beam and measure the intensity from the

Monochromator at every wavelength of interest. Use the reference detector calibration

data (in A/W) to calculate light intensity in [W/cm2] from the detector output current

[A] and subtract ambient light from the measurement.

2. Record exactly the location of the reference detector (within a few mm in X, Y and Z)

and place the QE STRUCTURE to be measured at the same location.

3. Perform a wavelength scan with exactly the same parameters (bandwidth, wavelengths

etc.) to measure spectral response and subtract ambient light from the measurement.

(Step size of the scan should be lower than the FWHM of the light).

5.1.4.3.Replacing reference detector with DUT at same location

1. One method to replace the device and place it at the exact same location is to use a

Convex Lens and place it between reference detector and Monochromator.

2. Adjust the position of lens so that one should get a small spot of light (convex lens

converges light at focal point) focused on at middle of detector reference detector and

now place the DUT and align it so that you get the same small beam of light on at

middle DUT.

5.1.4.4.Pay attention

1. The f-number of the light towards the QE structure and the reference detector should

be identical.

2. Both QE structure and reference detector should be perfectly homogenously

illuminated.

3. Signal level should be well above the dark current for accurate result.

5.1.4.5.Further recommendations

1. If no specific F-number is required the measurement is best done using plain

Monochromator output (at F/ 4 diverging) in the dark cabinet, without any additional

optics.

2. Direct or diffuse illumination will give different results for QE structure; clearly report

the method of illumination. The Bentham reference diode can be used for both.

3. Make sure that your Connection cables are not twisted or rounded as at times

communication freezes.

5.1.5.Accuracy of the method
Accuracy depend on the non idealities and assumptions. Following factor may affect accuracy

of the result:

1. Unstable light source.

40

2. Misalignments during replacing reference photodetector with QE structure. Below you

can see the deviation in measurement results when setup was assembled and dismantle

setup 4 times. Maximum difference in QE is of around 2.68%.

Figure 5.1-5 - QE setup accuracy diagram.

5.1.6.Alignments
Alignment is very important for this measurement. During measurement following points

should be kept in mind:

1. Light source should be parallel to DUT and the distance between them should be within

light source uniformity and intensity range (Refer monochromator data sheet).

2. QE structure and reference detector should be placed exactly at the same position.

5.1.7.Data Processing

5.1.7.1.Calculating SR and QE

5.1.7.1.1.CVF method

Quantum efficiency (QE) is the ratio of the average number of electrons generated in the pixel

(µe) to the average number of impinging photons in that pixel (µp) and is wavelength (λ)

dependent:

QE(λ) =
μe

μp
 (5.1-1)

The mean number of photons µp incident over the pixel area A [cm2] during the integration

time tint [s] can be computed from the known irradiance E [W/cm2] with:

μp =
A∙tint∙E

hc λ⁄
 (5.1-2)

Where c and h are the speed of light and Planck’s constant respectively.

In addition, mean number of electrons is given by-

μe = Vout CVF⁄ (5.1-3)

Photo induced charge Qph is the number of electrons μe multiplied by the elementary charge q.

41

Qph = μe. q (5.1-4)

Spectral response (SR) expressed in units A/W is the ratio between the average photocurrent

(Iph) and irradiance per pixel area (E*A):

SR =
Iph

E∙A
=

Qph tint⁄

E∙A
=

q(Vout CVF⁄)

tint∙E∙A
 (5.1-5)

Where Iph = Qph tint⁄ is the pixel photocurrent expressed as a photoinduced charge collected

during the integration time tint.

Where,

λ: Wavelength [nm]

q: electron charge = 1.602*10-19[C]

h: Planck’s constant = 6.626*10-34 [Js]

c: speed of light= 2.99792*1010 [cm/s]

5.1.7.1.2.QE structure measurement method

Spectral response is ratio of current generated and the power of incident light on the QE

structure. Now determine SR by the following formula:

SR[A/W] =
I

E∙Ar
 (5.1-6)

The quantum efficiency can be determined from the spectral response by replacing the power

of the light at a particular wavelength with the photon flux for that wavelength. This give:

QE[%] =
SR∙hc

λ∙q
× 100 (5.1-7)

Where,

I: measured current through "QE structure" [A]

A: Effective area of "QE structure" [cm2]

P: Intensity of light, which is incident on the sensor [W/cm2]

5.1.8.Graphs and Figures
Figure 5.1-6 shows a standard plot from one of the Caeleste image sensor. Both QE and SR are

plotted in function of wavelength, where QE is expressed in percentage (%), SR in (A/W) and

wavelength in (nm).

Figure 5.1-6 - Plot of QE and SR in function of wavelength.

400 450 500 550 600 650 700 750 800
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Wavelength (nm)

S
p

e
c
tr

a
l
re

s
p

o
n

s
e

 (
A

/W
)

25

30

35

40

45

50

55

60

Q
u

a
n

tu
m

 E
ffic

ie
c
n

y
 (%

)

42

5.2.Photo Response

5.2.1.Objective
Photo response of an image sensor is the measure of sensor ability to convert optical incident

power (number of photons hitting the sensor for a given integration time) into electrical signal

(gain of the system multiplied by the number of electron generated). It is a function of

wavelength. The main result from this procedure are photo response curve and charge to

voltage factor (CVF). Further from the curve one can determine other parameter like saturation

voltage, non-linearity and full well capacity.

5.2.2.Measurement Background

5.2.2.1.Method description

To determine photo response two parameters are required, 1st the incident input optical power,

which can be calculated using reference calibrated photodetector for particular wavelength and

2nd is the output electrical signal of the DUT, which is determined by measuring the output

signal over a fixed integration time for different illumination of sensor i.e. from saturation to

dark. Hence at a given wavelength and for given input optical power one can evaluate photo

response.

5.2.3.Measurement Setup

5.2.3.1.Block Diagram

Figure 5.2-1- Setup diagram for PR and CVF measurement.

5.2.3.2.List of Equipment

1. DUT.

2. Reference detector (CI-0046 Hamamatsu Si reference diode H1).

3. Mounting rails.

4. Power supply (CI-0033 TTi_QL355TP_Power_supply).

5. Electrometer (CI-0013 Keithley 6514 electrometer).

6. Caeleste LED light source.

7. Connection cables.

5.2.3.3.Software Tools

1. Iron Python-based Caeleste software environment.

Power supply

Electrometer

Temperature

sensor

LE
D

ar
ra

y

Feedback

photodiode

He
at

Calibrated

radiom eter

Light source

DUT

43

5.2.4.Measurement Procedure

5.2.4.1.Algorithm

To calculate the optical input power from a light source, measure the current of reference-

calibrated detector to irradiance E (standard conversion table provided from photodiode

manufacturer). Simultaneously measure the output electrical signal of the DUT i.e. the output

of ADC for different illuminations (saturation to dark) to obtain photo response curve.

Measuring the DUT signal means: grab a sequence of at least 10 images and calculate mean

of all the images to obtain final image.

5.2.4.2.Setup

1. Place the light source, DUT and reference detector at an appropriate position on the

optical bench.

2. Switch on the light source at maximum power and allow 10 minutes to get it thermally

stable.

3. Check that with the given placement deep saturation of the DUT can be reached near

maximum light source power such that you can still take couple of measurement after

saturation to get better result.

4. Record the position of light source, DUT and reference detector in X, Y and Z to within

a few mm. Make sure the parts can be removed from the optical bench and positioned

later on the same location.

5.2.4.3.Determine the correction factor for the reference detector

1. In case if you cannot replace the DUT and reference detector at the same location one

can use 2nd reference detector to cancel the error caused due to misalignment.

2. Remove the DUT and place a 2nd reference detector at the DUT position.

3. Measure the light intensity at both detector locations and determine the scaling factor.

Check that this factor is constant for different light intensities.

4. Remove the 2nd reference detector.

5.2.4.4.Procedure

1. Record the DUT identification and test conditions in the test report header template

and place the DUT at its position.

2. Control the LED source current to obtain different steps (smaller the better) in

illumination from saturation to dark.

3. At each illumination step acquire series of images (e.g. 10, 20) from the sensor and

take mean of the images [volts] and simultaneously measure the irradiance E [W/cm2]

of illumination using reference detector, apply the displacement correction factor to

the detector measurement value.

4. Also capture image in dark (µdark) for offset reference.

5. Plot the mean output signal (µ- µdark) [Volts/DN] versus the light intensity [W/cm2] to

obtain Photo response curve.

5.2.4.5.Further recommendations

1. Light source / illumination field non-flatness, non-uniformity: For large DUTs it is

advisable to use only a window of pixels to calculate the pixel average. This window

must have about the same size as the reference detector and be located at the X/Y

position of the 2nd reference detector during the determination of the displacement

correction factor.

44

5.2.5.Accuracy of the method
This measurement procedure accuracy depends on how accurately you measure the incident

optical power and also on the stability of light source. Also it is important to accurately process

the images that are captured to remove any offset and non-uniformities, but this procedure is

accurate to obtain non linearity, Vsat and full well capacity.

5.2.6.Data Processing
Characterization of Photo response curve give us information of number of useful parameters

like full well capacity, CVF, linearity, saturation. One can evaluate all this parameters using

data collected by following the above mentioned procedure.

Figure 5.2-2- Photo response curve.

5.2.6.1.Non Linearity

It is the measure of maximum deviation of output signal from an ideal (best line fit) response

of the sensor. It is defined within a certain range of illumination intensity for e.g. 10% to 90%

of saturation level. In this case the best fit line will be the straight line joining output voltage at

10% and 90% saturation value.

Figure 5.2-3- Non Linearity from Photo response curve.

NL[%] =
Emax

FS
× 100 (5.2-1)

Where,

NL = Nonlinearity,

45

Emax = maximum (most positive) error from best-fit straight line [Volts/DN],

FS = full-scale value or maximum output of sensor [Volts/DN].

Note that Emax is the maximum deviation in any direction. The full-scale value is the value of

the highest measurement taken which is still within the linear performance range. Normally

this is set to be as close to the actual full-scale capability of the A/D converter as is practical

during camera calibration.

5.2.6.2.Saturation (Vsat)

It is the point in the photo response curve after which the output of the sensor does not depend

upon illumination level i.e. point after which no more charge can be stored in floating diffusing.

5.2.6.3.Full well capacity

It is important how you define the full well capacity. Here full well capacity is referring to

saturation level of the sensor. Hence it is given as point of intersection of best line fit (i.e. the

line joining the 10% and 90% saturation level point) and best fit line for Vsat on photo response

curve as shown in the

Figure 5.2-4 below.

Figure 5.2-4- Photo response curve showing full well capacity.

5.2.6.4.Alternatively, from mean-variance method

It is the point in the noise plot where the temporal noise curve Figure 5.2-5 abruptly drops. This

is because the image sensor is in saturation region hence the output signal does not depend on

illumination level anymore and therefore average noise goes down.

46

Figure 5.2-5- Full well from Noise curve.

Or,
It is defined as the maximum charge storing capacity of floating diffusion, hence it can be

calculated as:

FWC = Vsat ∙ Ceff (5.2-2)

Where,

FWC = Full well capacity (number of electrons),

Vsat = Saturation voltage,

Ceff = Effective floating diffusion voltage.

5.2.6.5.CVF

Charge to voltage conversion factor tells you voltage equivalent of the number of electrons

generated and vice versa. Depending upon the data available there are two different methods

to determine CVF:

5.2.6.5.1.First method- (Photo response curve if Quantum efficiency value is known)

Convert the irradiance into number of electrons generated by following calculations:

Firstly, the mean number of photons µp absorbed over the pixel area A [cm2] during the

integration time tint [s] can be computed from the known irradiance E [W/cm2] with:

μp =
AtintE

hc λ⁄
 (5.2-3)

Where c and h are the speed of light and Planck’s constant respectively and λ is the wavelength

of incident light.

Now, Quantum efficiency (QE) is the ratio of the average number of electrons generated in the

pixel (µe) to the average number of photons absorbed in that pixel (µp) and therefore one can

calculate number of electron generated for known QE:

η(λ) =
μe

μp
 (5.2-4)

Now you can plot Vout (mean output signal) versus µe (number of electron) to get a CVF plot.

And the 1st derivative (slope) of the curve will give CVF [Volts/e-].

Where,

λ: Wavelength [nm]

q: electron charge = 1.602*10-19[C]

h: Planck’s constant = 6.626*10-34 [Js]

c: speed of light= 2.99792*1010 [cm/s]

47

Figure 5.2-6- CVF from Photo response curve if Quantum efficiency value is known.

5.2.6.5.2.Second method (Mean-Variance method or PTC curve method)

The mean-variance method employs the fact that the photon shot noise (PSN) level is

proportional to the square root of the signal level. Thus, by measuring signal and its variance

one can obtain the CVF. Take following steps to evaluate CVF:

1. From the set of captured image, compute the signal variance (temporal noise) and mean

signal for each pixel over the series of images at a given illumination level (however,

watch out for non-linearity). The result is the average over all pixels of signal variance

(σ2) [Volts2/DN2] and mean signal (µ) [Volts/DN] for that series and µdark serves as offset

reference.

2. Plot (σ2) and (µ - µdark) and in the range where (σ2) has a square root behavior i.e. the

linear region, the ratio between (σ2) and mean (µ - µdark) is actually the square root of the

number of photo electrons and the slope of this curve will result in CVF [Volts/e-].

Figure 5.2-7- CVF from PTC curve using mean variance method.

5.2.7.Accuracy of the method
Among the two method described; the photo response curve method seems more accurate as

mean-variance method is only accurate for perfectly linear image sensors. So photo response

curve is preferred for the CVF measurement.

48

In
te

n
si

ty

5.3.Modulation Transfer Function

5.3.1.Objective
Modulation Transfer Function (MTF) is the measure of sensors ability to transfer contrast at a

particular spatial resolution from the object to the image. It quantifies the overall imaging

performance of a system in terms of resolution and contrast. The following measurement

procedure is based on Slanted-Edge method and will result in Edge spread function (ESF), Line

spread function (LSF) and MTF of the sensor.

5.3.2.Measurement Background

5.3.2.1.Slanted-Edge method

The slanted-edge method based on ISO 12233 standard consists in imaging an edge onto the

detector, slightly tilted with regard to the rows (or the columns). So, a vertically oriented edge

allows obtaining the horizontal Spatial Frequency Response (SFR) of the detector. In that case,

the response of each line gives a different ESF, due to different phases [29] .

5.3.2.2.Method description

In order to calculate MTF of the system, first determine ESF which is the summation of

response of all the lines perpendicular to the slanted edge as response of single line will give

an under sample ESF, so by combining multiple lines with a slightly different position of the

edge (hence the slant edge) the sampling of the ESF becomes much better. Then calculate the

Line spread function (LSF) which is the derivative of ESF. Then by performing Fast Fourier

transform (FFT) of LSF will result in Optical Transfer Function (OTF). Finally, the MTF of

the sensor is the modulus of the OTF. Figure 5.3-3 shows numerical relationship between all

the parameters.

Figure 5.3-1-Slanted edge with ROI.

Figure 5.3-2-ESF curve obtained by projecting data from corrected image [29].

49

Figure 5.3-3- Relationship between PSF, ESF, LSF and OTF [44] .

5.3.3.Measurement Setup
Build the setup as shown in Figure 5.3-4, mount the calibrated lens on motor stage such that

center of lens is focused at the center of slanted edge and use motor stage to change the distance

to get the best focused image. Place the object (slanted edge) between sensor and the light

source. The setup should be mounted on a rigid optical bench or breadboard in the dark cabinet.

Typical list of equipment required for MTF measurements are:

1. DUT.

2. Reference detector (Hamamatsu Si reference diode).

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

4. Light source.

5. Slanted edge object (razor blade).

6. Flex TC.

7. Calibrated Camera Lens (F = 2.8 and OBJ = 0.3m).

8. Camera link.

9. Thorlabs motor stage.

5.3.3.1.Software Tools

1. Iron Python-based Caeleste software environment.

5.3.3.2.Block Diagram

Figure 5.3-4- Setup for MTF measurement inside dark chamber.

Light Source

Slated

Edge

Lens

Sensor

Motor Stage

50

5.3.4.Measurement Procedure

5.3.4.1.Algorithm

First correct the images for non-uniformities using flat-field correction. Then find the transition

point (position of the edge) i.e. position of the pixels where pixel value crosses 50% of the

maximum intensity and determine the response for every transition. Now shift the response for

every line on the slanted edge image over each other to get the oversampled transition curve

i.e. the ESF. Further LSF is calculated by taking the derivative of the ESF. And finally MTF is

calculated as modulus of Fast Fourier Transform of LSF at Nyquist frequency. If needed

various mathematical operations can be performed like- linear polyfit on transition position

value for small pixel size, interpolation on oversampled ESF and filtering for smoothing of

LSF curve.

5.3.4.2.Procedure

1. Build the setup as described in measurement setup to capture the images and place the

edge (Target) at distance (OBJ) of 30cm from the DUT.

2. Make sure that captured image does not saturate by setting appropriate light source

intensity (50% saturation).

3. Set the correct Lens setting (F = 2.8 and OBJ = 0.3m).

4. Capture three images under same camera setting and environment condition for

different distance to get best focused image:

a. Take a dark image as your reference.

b. Take a light image as your second reference.

c. Take an image of the slanted edge (target).

5. Correct the images for dark non-uniformity and for non-uniformities in light of your

pixel response using flat-field correction.

5.3.4.3.Pay attention

1. Make sure that the captured images do not saturate.

2. The slanted edge should be within 1º-10º angle as MTF depends on edge angle.

3. Make sure that you have correct lens setting.

5.3.5.Accuracy of method
The thing that can go wrong is the misalignment while removing target (slanted edge) and

capturing reference light and dark images. Also stability of light source is a must.

5.3.6.Data Processing
It is the main part of the procedure. To calculate MTF of the sensor perform the following

steps:

Note- Following calculation are for vertical edge and for horizontal edge interchange column

with row.

5.3.6.1.Correcting image

For the three images (dark, edge, light) taken at every distance perform flat-field correction as

following:

1. Both EDGE and LIGHT are corrected for their offset and dark non-uniformities by

subtracting DARK reference image, which leads to normalize images with black = 0

and white = 1.

51

2. The obtained correction (LIGHT-DARK) will be used to create a gain map for each

pixel, called correction factor (gain factor).

3. Hence obtained correct image will be (EDGE – DARK) / (LIGHT-DARK).

4. And finally linearly normalize the correct image.

5.3.6.2.Calculate ESF

First determine the pixel position for which pixel value is just > 0.5 and then determine 50%

transition point for all the lines (rows) of the edge from following formula -

Colintercept = Thresholdcol +
(col0−0.5)

(col1−col0)
 (5.3-1)

Where,

Colintercept: 50% transition point,

Thresholdcol: column position where pixel value is > 0.5,

col0: pixel value at threshold column for that line (row),

col1: pixel value at (threshold column -1) for that line (row).

Note: It is better to take linear poly-fit value for Colintercept if the pixel size is small.

Now obtain ESF plot by determining intensity value for all the transition pixels and taking 10

(can be any number) pixels on either side of it. The data for ESF is highly oversampled and

erratic, so should perform linear interpolation over ESF data.

5.3.6.3.Calculate LSF

LSF is the derivative of ESF. So one could employ Three-point derivative method to determine

LSF-

LSF(x) =
d

dx
ESF(x) (5.3-2)

LSFi =
1

2
(

ESFi+1−ESFi

coli+1−coli
−

ESFi−ESFi−1

coli−coli−1
) (5.3-3)

Note: You can apply smoothing filter (Savitzky–Golay filter) for LSF data smoothing. A

good setting for the filter can be order (m) = 2nd and window size (nr + nl + 1) = 51.

5.3.6.4.Calculate MTF

MTF is calculate by performing FFT over LSF and taking the modulus of the result.

At Nyquist frequency, MTF = |FFT(LSF)| (5.3-4)

Nyquist frequency is fastest signal that can be reliably sampled, hence Nyquist frequency =

2×pixel pitch.

Also, Nyquist frequency can be determined by calculating perfect MTF from a perfect LSF. A

perfect LSF is an ideal impulse of finite width and Nyquist frequency is the frequency at first

zero.

This MTF consist of MTF of the lens as well. So the final sensor MTF normalized from 0 to 1

is given as-

MTFsensor =
MTFmeasured

MTFlens
 (5.3-5)

52

5.3.7.Graphs and Figures

Figure 5.3-5- (a) Target edge with ROI and (b) Flat-Filed corrected image for computing ESF.

Figure 5.3-6- Graph between interpolated column number and row number (a) Raw data of

column values and (b) Linear polyfit data of column values.

Figure 5.3-7- Edge spread function of the edge image on y-axis normalized signal and on x-

axis pixel number, (a) Using raw data and (b) Interpolated data for pixel number.

(a) (b)

(a) (b)

(a) (b)

53

Figure 5.3-8- Line spread function of the corrected edge image, (a) LSF from actual data and

(b) LSF of perfect edge.

Figure 5.3-9- MTF of the corrected the edge image along with the perfect MTF obtained from

perfect LSF.

(a) (b)

54

5.3.8. Three-point derivative method
The derivative of a function is defined as-

f ′(x) = lim
h→0

f(x+h)−f(x)

h
 (5.3-6)

While h is small enough, we can use a centred difference formula to approximate the derivative:

f ′(xi) ≈
f(xi+h)−f(xi−h)

2h
 (5.3-7)

In practice, Origin treats discrete data by the transform centred difference formula, and

calculates the derivatives at point Pi by taking the average of the slopes between the point and

its two closest neighbours.

Figure 5.3-10- Three-point derivative method.

The derivative function applied to discrete data points can therefore be written as-

f ′(xi) =
1

2
(

yi+1−yi

xi+1−xi
−

yi−yi−1

xi−xi−1
) (5.3-8)

55

5.3.9.Code Description

Class Modulation Transfer

Description

A class that measures and computes Modulation Transfer Function. This class computes the

best focus position for the Lens and then capture images on and around the focus positon and

then correct the images to compute the MTF of the sensor.

Function - position_array()

This function generates a list of all the position on which motor stage will move depending on

the parameters passed.

position_array(mid_pos, range_pos, step_pos)

Parameters-

mid_pos <float> - start position in mm,

range_pos <float> - range of motor stage in mm,

step_pos <float> - step size of motor stage in mm.

Returns-

p_array <list> - List of all the positons of motor stage.

Function - focus_area()

This function captures an image and ask user select ROI of area to be focused. Coordinates of

ROI are stored in vector which are later used to find focus.

Returns-

roi <vector> - coordinates of focus area.

Function - find_focus()

This function finds the best focus position for the Lens mounted on motor stage depending on

the parameters passed, to capture image for computing MTF.

find_focus(self,range_, step)

Parameters-

range_ <float> - range of motor stage in mm,

step <float> - step size of motor stage in mm.

Returns-

focus_position <float> - best focus position.

Function - capture_image()

This function captures images according to specified experiment_type (dark, light and edge) at

different positons and saves them in NAS directory corresponding to current project.

capture_image(self,range_, step)

Parameters-

range_ <float> - range of motor stage in mm,

step <float> - step size of motor stage in mm.

Function - correct_horizontal_image()

This function corrects the horizontal edge image by applying flat-field correction, take ROI of

the images and normalize, rotate and flip if needed.

Returns-

56

img_edge <vector> - vector of all the images corrected.

Function - correct_vertical_image()

This function corrects the vertical edge by applying flat-field correction, take ROI of the images

and normalize, rotate and flip if needed.

Returns-

img_edge <vector> - vector of all the images corrected.

Function - create_ESF()

Function creates ESF vector and generate ESF plot for all the images in img_edge, also

generate plot for column intercept i.e. the transition position.

Returns-

ESF <vector> - 3D vector for intensity and interpolated column values for all the

 images.

Function- create_ESF()

Function creates LSF vector and generate LSF plot for all the images in img_edge. Also

perform filtering for curve smoothing.

Returns-

LSF <vector> - 3D vector for intensity and pixel number for all the images,

LSF_filtered <vector> - 3D vector of filtered LSF values.

Function - create_MTF()

Function creates computes MTF of all the images in img_edge and generate MTF, MTF perfect

plot.

Returns-

value <list> - List of MTF values of all the images at Nyquist frequency from LSF,

value_filt <list> - List of MTF values of all the images at Nyquist frequency from filtered

 LSF,

mtf <list> - List of values FFT of LSF.

57

5.3.10.Example
#creating instance for class

mtf = ModulationTransfer():

#Computes ROI coordinates for finding best focus image and return roi

mtf.focus_area();

#find position for best focused image starting at start_pos for range of 10mm and with step size

of 0.1mm and return focus_position

mtf.find_focus(5,0.1);

#capture image starting at focus_position for range of 10mm and with step size of 0.1mm

mtf.capture_image(10,0.1);

#correct horizontal images and return images in vector image_edge

mtf.correct_horizontal_image();

#correct vertical images and return images in vector image_edge

mtf.correct_vertical_image();

#compute ESF from corrected images in image_edge and return ESF vector

mtf.create_ESF();

#compute LSF from ESF vector and return LSF and LSF_filtered vector

mtf.create_LSF();

#compute MTF from LSF vector and return MTF value at Nyquist frequency

mtf.create_MTF();

58

DUT

5.4.Read Noise

5.4.1.Objective
This procedure is to perform noise analysis of the sensor. Read Noise is the noise under zero

illumination and it is invariant of temperature, integration time. It is result of various noise

sources like- KTC noise, ADC noise, and temporal row noise and interference pattern.

5.4.2.Measurement Background

5.4.2.1.Method description

Read noise or temporal noise in dark is the inherent noise of a sensor and is equal to noise level

at zero illumination. It is measured for 0ms integration time (tint) to avoid DSNU and DUT is

not illuminated otherwise photon shot noise is dominant.

5.4.3.Measurement setup

5.4.3.1.Block Diagram

Figure 5.4-1-Setup for Noise measurement.

From the block diagram in Figure 5.4-1build the setup for the measurement. The camera link

is used to capture image in dark. The setup should be mounted on a rigid optical bench or

breadboard in the dark cabinet. Typical list of equipment employed for this measurements:

1. DUT.

2. Camera link.

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

5.4.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

5.4.4.Measurement Procedure

5.4.4.1.Algorithm

The idea behind the measurement is to calculate read noise by computing standard deviation

(σ)rms [Volts/DN] for each pixel over the series of images taken in dark for same tint[s] and

taking average of all the pixel’s value to get noise over frame.

5.4.4.2.Procedure

1. Built the setup as shown in Figure 5.5-1, place the DUT and connect the peripheral

equipment and turn ON the supply.

Power

Supply

59

2. First capture some dummy images (e.g. 20, 30) for system to get stable and then capture

certain number of images (e.g. 10, 20).

5.4.4.3.Pay attention

1. Capture as many image for accurate result and by taking their average one can remove

all the offset and fixed pattern noise.

5.4.5.Data Processing
Read Noise is random variation in measurement value over a period of time, hence the noise is

calculated in dark by evaluating temporal signal variance over series of frame for individual

pixel and then by taking the average over all the pixels, which tells noise over image.

Variance (σ2) =
∑

∑ (Pij−M)2N
i=1

N
K
j=1

K
 (5.4-1)

Noiserms [Volts/DN] = √𝜎 (5.4-2)

Where,

Pij = jth pixel value from ith frame,

M = mean value of all the jth Pixels of N frames,

N = Total number of frame acquired at specific illumination,

K = Total number of pixel.

Note: One can divide Noise in Volts by CVF to get Noise in electrons and above calculation

can be performed on a row or a column to get row noise and column noise.

5.4.6.Accuracy of the method
This method is very accurate for determining Read noise. The two things that are important for

accurate result are:

1. Measurement should be performed under perfectly dark condition and stable

temperature so that there is no influence of dark current.

2. Integration time to capture image should be as short as possible so that the influence

of DSNU is minimized.

5.4.7.Graphs and Figures

Figure 5.4-2- a) Noise per row and b) Its histogram.

0 20 40 60 80 100 120 140 160 180 200
0.003

0.004

0.005

0.006

0.007

0.008

 N
o

is
e

 le
ve

l (
3


 %
 F

S
)

Row index (#)

a) b)

0.003

0.004

0.005

0.006

0.007

0.008

0 5 10 15 20 25 30

Number of rows per bin

60

Figure 5.4-3- a) Noise per column and b) its histogram.

0 50 100 150 200 250 300 350 400 450 500 550 600
0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010
 N

o
is

e
 l
e

v
e

l
(3


 %
 F

S
)

Column index (#)

a) b)

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 20 40 60 80 100

Number of columns per bin

61

DUT

5.5.Dark signal and Dark signal non-uniformity

5.5.1.Objective
This procedure is to evaluate Dark signal i.e. dark current that flows through the sensor under

no illumination and dark signal non uniformity (DSNU) is the spatial non-uniformity

associated with the dark signal.

5.5.2.Measurement Background

5.5.2.1.Method description

Dark signal is a result of dark current of the photodiode and is dependent on temperature and

integration time. DSNU are statistical variation on the generation/recombined level in each

pixel i.e. the dark signal. Hence by measuring sensor output with respect to time under zero

illumination dark signal and DSNU can be evaluated.

5.5.3.Measurement setup

5.5.3.1.Block Diagram

Figure 5.5-1- Setup for DS and DSNU measurement.

From the block diagram Figure 5.5-1 build the setup for the measurement. The camera link is

used to capture image in dark. The setup should be mounted on a rigid optical bench or

breadboard in the dark cabinet. Typical list of equipment employed for this measurements:

2. DUT.

3. Camera link.

4. Power supply (CI-0033 TTi_QL355TP_Power_supply).

5.5.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

5.5.4.Measurement Procedure

5.5.4.1.Algorithm

The idea is to capture two images one with short tint1[s] and one with long tint2[s] and take their

difference to compute dark response and then computing standard deviation (σ)rms to determine

DSNU.

Power supply

62

5.5.4.2.Procedure

1. Built the setup as shown in Figure 5.5-1, place the DUT and connect the peripheral

equipment and turn ON the supply.

2. Capture Image 1 with very short tint1.

3. Capture Image 2 with a long tint2, at least long enough to see a significant dark current.

4. Capture a dummy Image 3 for even a longer integration time then tint2 just to check that

Image 1 and Image 2 are in linear region.

5.5.5.Data Processing
Dark signal (DS) or dark count rate [e-/sec] is the mean response of (Image 1- Image 2)/ (tint1 -

tint2). DSNU [Vrms] is the standard deviation of this response / (tint1 - tint2).

Note: It is believed that Idark must be measured with pixels SELECT off, to avoid hot carrier

luminescence.

5.5.6.Accuracy of the method
The accuracy of this method is based on the assumption that the variation in pixel value over

series of images is only noise, but there can be other variations, like delay in capturing

subsequent images. Also dark signal and DSNU dependent on temperature so measurement

should be done on temperature stabilized system.

5.5.7.Graphs and Figures

Figure 5.5-2-Signal level in function of Integration time setting at different sensor

temperatures.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

2.0m

4.0m

6.0m

8.0m 20°C

 22°C

 32°C

 42°C

 52°C

S
ig

n
a

l
(V

)

Integration time (s)

63

Temperature

sensor

LE
D

ar
ra

y

Feedback

photodiode

He
at

Calibrated

radiom eter

Light source

5.6.FPN and PRNU

5.6.1.Objective
This procedure is to perform non-uniformities analysis of the sensor. The statistical static

variation of “offset” Fixed Pattern Noise (FPN) and “gain” Photo Response Non Uniformity

(PRNU).

5.6.2.Measurement Background

5.6.2.1.Method description

Fixed pattern noise are the type of spatial non-uniformities within an image, this non

uniformities are result of pixel to pixel variation. The two basic non uniformity are “offset”

FPN which is also part of DSNU (Dark signal non uniformity) not dependent on temperature

and integration time and “gain” PRNU (Photo response non uniformity) is non uniformity

under illumination. Hence by observing pixel variation over a frame FPN and PRNU can be

evaluated in dark and under illumination respectively.

5.6.3.Measurement setup

5.6.3.1.Block Diagram

Figure 5.6-1- Setup for FPN and PRNU measurement.

From the block diagram in Figure 5.6-1 build the setup for the measurement. The camera link

is used to capture images. The setup should be mounted on a rigid optical bench or breadboard

in the dark cabinet. Typical list of equipment employed for this measurements:

5. DUT.

6. Camera link.

7. Power supply (CI-0033 TTi_QL355TP_Power_supply).

8. Caeleste LED light source.

5.6.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

Power supply

DUT

64

5.6.4.Measurement procedure

5.6.4.1.Algorithm

To calculate FPN and PRNU, one needs to capture certain number of images for three

illumination settings dark, light and saturation. FPN is the variation in pixel dark signal over a

frame and is determined by calculating STDEV of mean image obtained from set of frame

taken in dark. PRNU as the name suggest is the non-uniformity in spatial variation of pixel

value for specific illumination. It can be determined by calculating coefficient of variation of

the mean image. We take mean of number of images in order to remove temporal noise. Images

are taken for short tint to nullify DSNU.

5.6.4.2.Procedure

1. Place the light source and DUT at an appropriate position on the optical bench such

that with the given placement deep saturation of the DUT can be reached near

maximum light source power.

2. Capture number of images (e.g. 10, 20) in dark.

3. Now power ON the light source and allow 10 minutes to get it thermally stable.

4. Capture number of images (e.g. 10, 20) for light (50% of saturation level) and for

saturation.

5. Calculate mean of all the images captured for dark, light and saturation respectively to

obtain resultant images for all three conditions.

Note- Capture images with short tint to keep DSNU negligible.

5.6.5.Data processing
FPN is the static variation of offset in dark signal from pixel to pixel.

FPN [Vrms] = STDDEV (dark) (5.6-1)

FPN [%] = FPN [Vrms]/ (sat- dark) (5.6-2)

PRNU as the name suggest is the non-uniformity in spatial variation of pixel value for specific

illumination (nominally at 50% of saturation level). It can be evaluated by calculating

coefficient of variation of an image.

PRNU = CV = STDEV (light-dark) / (light-dark) (5.6-3)

Where,

dark: resultant image by taking mean of all the images taken in dark.

light: resultant image by taking mean of all the images taken in light.

sat: resultant image by taking mean of all the images taken in saturation.

STDDEV: Standard deviation.

CV: Coefficient of variation.

65

5.7.Image Lag

5.7.1.Objective
It is the memory effect of the sensor due to the residual charge in pinned photodiode. The

measurement result in [%] of signal level not reaching the final value.

5.7.2.Measurement Background

5.7.2.1.Method Description

The purpose of this test is to estimate the lag of the image sensor. Pinned photodiode can be

modeled as lumped RC network, hence there is certain time constant (delay) for charge to

deplete through the diode or the potential barrier and if the width of the pulse applied to transfer

gate is smaller than the time constant (delay) then it will result in residual charge at photodiode

therefore the lag in the sensor.

In a 4T pixel, this is due to the emptying time constant of charge that is limited by the potential

barrier. Charge transfer from Pinned photodiode can mathematically corresponds to current

through MOSFET in sub-threshold or the forward current through a diode. Hence it requires

certain time constant to overcome the barrier and this emptying time constant can then be

directly translated into “image lag”.

5.7.3.Measurement Setup

5.7.3.1.Block Diagram

Figure 5.7-1- Setup for Image lag measurement.

5.7.3.2.List of Equipment

9. DUT.

10. Mounting rails.

11. Power supply (CI-0033 TTi_QL355TP_Power_supply).

12. Caeleste LED light source.

13. Connection cables.

14. Cameral ink.

5.7.3.3.Software Tools

1. Iron Python-based Caeleste software environment.

Temperature

sensor

LE
D

ar
ra

y

Feedback

photodiode

He
at

Calibrated

radiom eter

Power

supply

Light source

DUT

Trigger light

source using DUT

66

5.7.4.Measurement Procedure

5.7.4.1.Algorithm

The idea behind the measurement is to grab certain (e.g. 10) black frames followed by

illuminated frames and vice versa by illuminating the sensor by a light pulse of same duration

as tint and synchronized with begin/end of the tint. The frame-to-frame crosstalk (image lag) is

then estimated as an average signal level in dark state expressed in percent of signal level in

illuminated state.

5.7.4.2.Procedure

1. Built the setup as shown in Figure 5.7-1, place the light source and DUT and connect

the peripheral equipment and turn ON the supply.

2. Adjust the illumination level (via current, distance, extra attenuators) so that the signal

is (default, and if not, report this) at about 50% of saturation when the light is on. In

some case it is of interest to do the measurement also at 10% or even less (1%) of

saturation.

3. Generate the sequence using either waveform generator or SeqC and grab 10 frames

in dark, followed by 10 illuminated frame.

4. Perform above step for illumination to dark situation.

5. For accurate triggering of light pulse, one should use a trigger pulse from the test board

itself.

5.7.4.3.Accuracy of the method

There is hardly anything that can go wrong with this simple procedure, but still there can be

some sources of error-

1. Generated sequence is not perfectly aligned with begin/end of the tint.

2. Light source instability can cause delay in switching ON/OFF of light pulse.

5.7.5.Data Processing
Image lag is calculated by computing the decaying response from illumination to dark or vice

versa.

Lag [%] =
μlight− μdark

μlight
× 100 (5.7-1)

Where,

µdark: mean value of the first dark frame taken just after the light frame.

µlight: mean value of the last light frame.

5.7.6.Graphs and Figures

Figure 5.7-2- Timing diagram for Image Lag measurement.

Synchronized
Last Light

frame

First Dark

frame

67

Figure 5.7-3- Image lag for 50 frames with 5 consecutive light and dark frames.

68

 Chapter 6

6.1.Summary and Conclusions
This work presents complete standard procedure for characterizing CMOS image sensor. The

main objective of this work is to better the measurement procedure, so after rigorous

measurements and testing on different image sensor samples standard procedures are created.

Also the software library to communicate with the test board and image sensor are updated and

new hardware tools were incorporated for accurate and precise measurements. Here are some

conclusions drawn on the basis of the measurements performed for characteristic parameters

of the CMOS image sensor.

6.1.1. Conclusions
1. First and foremost, it is importance to have a stable and accurate light source, all the

characteristic measurement includes light source except dark signal measurement.

Therefore, it is important that light source emits light with constant intensity and

uniformity over DUT.

2. The characterization of Caeleste LED light source shows that the light source is not

very stable and uniform and with improvements like an optical feedback and PID

controller may result in a better stability and uniformity of light source. The initial

result of improved light source showed significant improvements in stability but

complete characterization was not performed to draw firm conclusions.

3. Quantum efficiency is an important characteristic. For measuring quantum efficiency

Caeleste uses dedicated test structure which are identical to those of the original

sensor’s pixel array in terms of photodiode, transfer gate and metallization properties.

So this helps in performing accurate measurement as it eliminates large test boards and

influence of any extra circuit. For example, QE test structures consist of guard pixel

which prevents any charge leakage in the pixel from outside.

4. The other problem with QE measurement is its setup accuracy. As it is important to

place the QE test structure exactly at the same location as of reference photodiode to

receive same intensity of light for both. But from the measurement result shown in

Figure 5.1-5. The current setup result in inaccuracy of 2.68% which is quite a lot, so

to solve this problem new hardware tool are ordered for precise alignment of devices

under test.

5. The other method to compute quantum efficiency is from the conversion gain value or

charge to voltage factor as described in section 5.1.7.1.1 and this method seems less

accurate as compared to QE test structure method, as it depends on the accuracy of

conversion gain value.

6. Next characteristic measurement is photo response measurement of the image sensor

which provides information on linearity, full well capacity and conversion gain value.

The accuracy of this method entirely depends on light source stability and how

accurately light intensity is measured using reference photodiode, as measurement are

performed by changing the light intensity in a controlled way and computing image

sensor response.

7. From the two methods to compute conversion gain mentioned in section 5.2.6.5.1 and

section 5.2.6.5.2, the photo response curve method seems more accurate as mean-

variance method is only accurate for perfectly linear image sensors. So photo response

curve is preferred for the CVF measurement at Caeleste. The mean-variance method

gives more accurate result for linear image sensors.

69

8. The important thing to take into account while computing conversion gain from mean-

variance method is the higher the number of frames taken to calculate variance of the

output signal better is the accuracy of the result. As accuracy of conversion gain

depends on the number of samples taken [].

9. Next characteristic measurement is modulation transfer function which is also measure

of optical crosstalk. There are different methods to compute MTF of which slanted

edge method is more accurate and fast method.

10. This thesis work draws some conclusion about data processing, as MTF measurement

involves lots of mathematical computation. The first and foremost is to get

oversampled data for edge spread function. The measurements clearly show more the

number of sampling point higher is the accuracy of generated ESF.

11. The other interesting thing about data processing while computing edge location; for

large pixel size it better to take raw sampled data and for small pixel size it is better to

apply linear polyfit on sampled data. It is because for small pixel size there are chances

that sampled signal is a result of noise and not the actual data. This phenomenon can

be seen in Figure 5.3-6.

12. Similarly, for the edge spread function data, there is a need for interpolation. The

oversampled data obtained for the edge spread function is very erratic and inconsistent,

so before computing line spread function the oversampled data need to be interpolated

first.

13. A generalized conclusion can be drawn for noise measurement; it is important to know

which type of noise is being measured. While measuring read noise, which is the

inherent noise of the image sensor under no illumination, it should be independent of

dark noise and should be measured on temperature stable system. Similarly, while

measuring PRNU, the integration time for grabbing a frame should be as small as

possible to eliminate DSNU.

14. The other important thing while measuring the signal level is that for accurate

measurements the signal level should be significant with respect to noise level.

15. Image lag is not much significant in CMOS image sensor compare to CCD’s, but with

continuous increase in high speed and large full charge capacity requirements image

lag can be a problem in future.

6.2.References

[1] G. P. Weckler, "Operation of p-n junction photodetectors in a photon flux integrating mode," IEEE

Journal of Solid-State Circuits, vol. 2, pp. 65-73, 1967.

[2] G. Weckler and R. Dyck, "Integrated arrays of silicon photodetectors for image sensing," IEEE

Trans. Electron Devices, Vols. ED-15, pp. 196-201, 1968.

[3] P. Noble, "Self-scanned silicon image detector arrays," IEEE Trans. Electron Devices, Vols. ED-15,

pp. 202-209, 1968.

[4] D. Renshaw, P. B. Denyer, G. Wang and M. Lu, "ASIC image sensors," IEEE International

Symposium on Circuits and Systems, vol. 4, pp. 3038-3041, 1990.

70

[5] R. Nixon, "128x128 CMOS Photodiode-Type Active Pixel Sensor with On-Chip Timing, Control

and Signal Chain Electronics," Proceeding of SPIE, vol. 2415, pp. 117-123, 1995.

[6] A. Krymski, D. V. Blerkom, A. Andersson, N. Block, B. Mansoorian and E. R. Fossum, "“A high

speed, 500 frames/s, 1024 × 1024 CMOS active pixel sensor," Symp. VLSI Circuits, p. 137–138,

1999.

[7] E. R. Fossum Fellow IEEE and D. B. Hondongwa Student Member IEEE, "A Review of the Pinned

Photodiode for CCD and CMOS Image Sensors," IEEE Journal of the Electron Devices Society, vol.

2, no. 3, 2014.

[8] W. F. Kosonocky and J. E. Carnes, "Basic concepts of charge-coupled devices," vol. 36, p. 566–593,

1975.

[9] T. Yamada, H. Okano and N. Suzuki, "The evaluation of buriedchannel layer in BCCD’s," IEEE

Trans. Electron Devices, vol. 25, p. 544–546, 1978.

[10] Y. XU, "Fundamental Characteristics of a Pinned Photodiode CMOS Pixel," 2015.

[11] A. Gamal El and H. Eltoukhy, "CMOS Image sensor," IEEE CIRCUITS & DEVICES MAGAZINE,

MAY/JUNE 2005.

[12] S. Wuu, H. Chien, D. Yaung, C. Tseng, C. Wang, C. Chang and H. Y.K., "A high performance active

pixel sensor with 0.18-μm CMOS color imager technology," IEEE IEDM Tech. Dig., p. 555–558,

2001.

[13] T. Inoue, S. Takeuchi and S. Kawahito, "A CMOS Active Pixel Image Sensor with In-pixel CDS for

High-Speed Cameras," Proceedings of SPIE - The International Society for Optical Engineering

(Proceedings of SPIE), Vols. 2 5301A-32, pp. 1-8, 2004.

[14] R. M. Guidash, T. -H. Lee, P. P. K. Lee, D. H. Sackett, C. I. Drowley, M. S. Swenson, L. Arbaugh,

R. Hollstein, F. Shapiro and S. Domer, "A 0.6 /spl mu/m CMOS pinned photodiode color imager

technology," Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, pp. 927 -

929, 1997.

[15] K. Yonemoto, H. Sumi, R. Suzuki and T. Ueno, "A CMOS image sensor with a FPN-reduction

technology and a hole accumulated diode," Dig. Tech. Papers, ISSCC, pp. 102-103, 2000.

[16] I. Inoue, H. Nozaki, H. Yamashita, T. Yamaguchi, H. Ishiwata, H. Ihara, R. Miyagawa, H. Miura, N.

Nakamura, E. Y. and M. Y., "New LV-BPD(Low Voltage Buried Photo-Diode) for CMOS Imager,"

IEDM, Technical Digest, 1999.

[17] S. K. Mendis, "CMOS active pixel image sensors for highly integrated imaging systems," IEEE

Journal of Solid-State Circuits, vol. 32, pp. 187-197, 1997.

[18] S. Kawahito, S. Suh, T. Shirei, S. Itoh and S. Aoyama, "Noise Reduction Effects of Column-Parallel

Correlated Multiple Sampling and Source-Follower Driving Current Switching for CMOS Image

Sensors," 2009.

[19] X. Ge, "The design of a global shutter cmos image sensor in 110nm technology," 2012.

71

[20] J. Nakamura, in Image Sensors and Signal Processing for Digital Still Cameras, 2005, pp. 79-91.

[21] A. Darmont, "Spectral Response of Silicon Image Sensors," Aphesa (www.aphesa.com), 2009.

[22] "Sensitivity of CCD cameras–some key factors to consider," [Online]. Available:

http://www.andor.com/learning-academy/sensitivity-of-ccd-cameras-key-factors-to-consider.

[23] M. Green and M. Keevers, "Optical properties of intrinsic silicon at 300 K. Progress in

Photovoltaics," vol. 3, pp. 189-192, 1995.

[24] "Photop Technologies, Inc.," 2012. [Online]. Available:

http://www.photoptech.com/main/products_gx/Etalon.php.

[25] S. Kar, "MOSFET: Basics, Characteristics, and Characterization," in High Permittivity Gate

Dielectric Materials, 2013, pp. 47-152.

[26] S. Shafie, S. Kawahito, I. A. Halin and W. Z. W. Hasan, "Non-Linearity in Wide Dynamic Range

CMOS Image Sensors Utilizing a Partial Charge Transfer Technique," Sensors (14248220), vol. 9,

no. 12, pp. 9452-9467, 2009.

[27] D. Gardner, "Characterizing digital cameras with the photon transfer curve," Summit imaging.

[28] J. Janesick, "Scientific CCDs," in Optical Engineering, 1987, pp. 692-714.

[29] P. Magnan and M. Estribeau, "Fast MTF measurement of CMOS imagers using ISO 12233 slanted

edge methodology," SPIE Proceedings, vol. 5251, 2004.

[30] E. Buhr, S. Guenther-Kohfahl and U. Neitzel, "Simple method for modulation transfer function

determination of digital imaging detectors from edge images," in Proc. SPIE 5030, Medical Imaging

2003: Physics of Medical Imaging, 2003.

[31] O. Corporation, "How to Measure MTF and other Properties of Lenses," 1999. [Online]. Available:

http://www.optikos.com/wp-content/uploads/2013/11/How-to-Measure-MTF.pdf.

[32] D. Vany and S. Arthur, Master Optical Techniques (Wiley Series in Pure and Applied Optics), 1981.

[33] H. Tian, "Noise Analysis in CMOS image sensor," 2000.

[34] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston: McGraw Hill, 2001.

[35] A. Scholten and D. Klaassen, "New 1/f noise model in MOS Model 9, level 903," 1998.

[36] K. K. Hung, P. K. Ko, H. C. and Y. C. Cheng, "A unified model for the flicker noise in metal-oxide-

semiconductor field-effect transistors," IEEE Transactions on Electron Devices, vol. 37, no. 3, 1990.

[37] N. Loukianova al. et, "Leakage Current Modeling of Test Structures for Characterization of Dark

Current in CMOS Image Sensors," IEEE Transactions on Electron Devices, vol. 50, pp. 77-83, Jan.

2003.

[38] S. Sze, Semiconductor Devices. Physics and Technology, New York: John Wiley & Sons, 2001.

72

[39] D. A. Neamen, in Semiconductor Physics and Devices Basic Principles, The McGraw-Hill

Companies, 2012, p. 227.

[40] X. Wang, "Noise in Sub-Micron CMOS Image Sensors," 2008.

[41] E. R. Fossum and D. B. Hondongwa, "A Review of the Pinned Photodiode for CCD and CMOS

Image Sensors".

[42] M. Sargent, "National Physics Laboratory," 2011. [Online]. Available:

http://www.kayelaby.npl.co.uk/introduction_to_quality_assurance_of_measurements/8_3/8_3.html.

[43] Bentham, "TMc300 Single Monochromator," [Online]. Available:

http://www.bentham.co.uk/tmc300.htm.

[44] D. R. A. Schowengerdt, "Image Science and Engineering," 2000.

73

 Chapter 7

Appendix

7.1.Python Code for Filtering
__author__ = 'utsav'

from TSSF import *

''' Filtering module '''

def savgol_filter(nl, nr, m, data):

 """savgol_filter(no. of points in left, no. of points in right, order, data)

 nl <int> = 'no. of point in left'

 nr <int> = 'no. of point in right'

 m <int> = '2 or 4' #order

 The order of the polynomial used to fit the samples.

 `m` must be less than `nl + nr + 1'.

 data <vector> = data you want to filter

 returns filter data in form of a vector

 np = window_length

 The length of the filter window (i.e. the number of coefficients).

 `window_length` must be an odd positive integer.

 ld(derivative) = 0 for smoothing optional

 The order of the derivative to compute. This must be a

 nonnegative integer. The default is 0, which means to filter

 the data without differentiating.

 check if all the given inputs are valid

 ld = 0 , np = nr + nl + 1 , m < nr + nl

 first modify the vector data by adding zero in start and end just to match size then

 generates filter data by performing convolution between data and filter coefficients

 """

 filter_data = Vector()

 #creating filter coefficients

 coeff = coefficients(nl , nr, m);

 i = 0

 j = 0

 filter_data = Vector(data.TotalSize)

 average = 0

 convolution = []

 modify_data = Vector(data.TotalSize + (coeff.TotalSize-1))

 while (i < data.TotalSize):

 #add zero in starting

 for j in range(0,(coeff.TotalSize-1)/2):

 modify_data[j] = 0

 #actual data

 for j in range((coeff.TotalSize-1)/2,(modify_data.TotalSize- (coeff.TotalSize-

1)/2)):

 modify_data[j] = data[i]

 i = i + 1

 #add zero at the end

74

 for j in range((modify_data.TotalSize-(coeff.TotalSize-

 1)/2),modify_data.TotalSize):

 modify_data[j] = 0

 #performing convolution

 for i in range((modify_data.TotalSize - (coeff.TotalSize-1))):

 average = 0

 for j in range(coeff.TotalSize):

 average = average + coeff[j]*modify_data[i+j]

 convolution.append(average)

 for i in range(len(convolution)):

 filter_data[i] = convolution[i]

 return filter_data

def coefficients(nl , nr, m):

 """ coefficients (no. of point in left, no. of point in right, order)

 nl = 'no. of point in left'

 nr = 'no. of point in right'

 m = '2 or 4' #order: int

 The order of the polynomial used to fit the samples.

 `m` must be less than `window_length`.

 returns coefficients in form of a vector

 np = window_length : int

 The length of the filter window (i.e. the number of

 coefficients).

 `window_length` must be an odd positive integer.

 ld(derivative) = 0 for smoothing optional

 The order of the derivative to compute. This must be a

 nonnegative integer. The default is 0, which means to filter the data without

 differentiating.

 check if all the given inputs are valid

 ld = 0 , np = nr + nl + 1 , m < nr + nl

 """

 np = nr + nl + 1

 a = Vector(m+1 , m+1)

 d = 1

 #The order of the derivative to compute

 ld = 0

 indx = Vector(m+1)

 b = Vector(m+1)

 n = m+1

 #filter coefficients

 coeff = Vector(np)

 #this loop performs least square method

 for ipj in range(m*2+1):

 if (ipj != 0):

 sum = 0

 else:
 sum = 1

 for k in range(1, nr+1, 1):

 sum = sum + pow(k,ipj)

 for k in range(1, nl+1, 1):

75

 sum = sum + pow(-k, ipj)

 mm = min(ipj , (2*m -ipj))

 for imj in range(-mm, mm+1, 2):

 a[(ipj+imj)/2, (ipj-imj)/2] = sum

 #linear equation solution, LU decomposition

 ludcmp(a, m+1, indx, d);

 for j in range(m):

 b[j] = 0.0

 b[ld] = 1.0

 #linear equation solution, back substitution

 lubksb(a, m+1, indx, b);

 for kk in range(np):

 coeff[kk] = 0.0

 #generates filter coefficients

 for k in range(-nl, nr+1, 1):

 sum = b[0]

 fac = 1.0

 for mm in range(m):

 fac *= k

 sum = sum + (b[mm+1]*fac)

 coeff[k+nr] = sum

 return coeff

def ludcmp(a, n, indx, d):

 """linear equation solution, LU decomposition"""

 vv = Vector(1, n)

 Tiny = 1.0e-20

 for i in range(n):

 big = 0.0

 for j in range(n):

 temp = abs(a[i, j])

 if (temp > big):

 big = temp

 if (big == 0.0):

 print 'error'

 vv[i] = 1.0/big

 for j in range(n):

 for i in range(j):

 sum = a[i, j]

 for k in range(i-1):

 sum = sum - a[i, k]*a[k, j]

 a[i, j] = sum

 big = 0.0

 for i in range(j, n, 1):

 sum = a[i, j]

 for k in range(j):

 sum = sum - a[i, k]*a[k, j]

 a[i,j] = sum

 dum = vv[i]*abs(sum)

 if (dum >= big):

 big = dum

 imax = i

76

 if (j!= imax):

 for k in range(n):

 dum = a[imax, k]

 a[imax, k] = a[j, k]

 a[j, k] = dum

 d = -(d)

 vv[imax] = vv[j]

 indx[j] = imax

 if (a[j, j] == 0.0):

 a[j, j] = Tiny

 if (j != n):

 dum = 1.0/a[j, j]

 for i in range(j+1, n, 1):

 a[i,j] *= dum

 return a

def lubksb(a, n, indx, b):

 """linear equation solution, backsubstitution"""

 ii=0

 for i in range(1, n+1, 1):

 ip = indx[i-1]

 sum = b[int(ip)]

 b[int(ip)] = b[i-1]

 if (ii != 0):

 for j in range(ii-1, i-1, 1):

 sum = sum - a[i-1, j]*b[j]

 else:
 if (sum != 0):

 ii = i

 b[i-1] = sum

 for i in range(n-1, -1, -1):

 sum = b[i]

 for j in range(i+1, n, 1):

 sum -= a[i,j]*b[j]

 b[i] = sum/a[i, i]

 return b

77

7.2.Python Code for MTF measurement
"Author- Utsav"

slanted edge

import os

import sys

import System

import inspect;

import TSSF;

from Toolbox.Utilities import DirectorySwap

from Toolbox.Utilities import filtering

from time import sleep;

from time import time;

from TSSF import UIUtil

import datetime

from TSSF.UIUtil import Plot, PlotRefresh, Ask # import ironplot as ip

from TSSF import Vector

from TSSF import ImageLab

import glob

import clr, System

import shutil

import random;

from Toolbox import Equipment;

import Toolbox;

from Caeleste.Instruments.Thorlabs import TDC001;

clr.AddReference("System.Windows.Forms");

clr.AddReference("Caeleste.Instruments.Thorlabs");

def position_array(mid_pos, range_pos, step_pos):

 p_array = [mid_pos - range_pos];

 while p_array[-1] <= (mid_pos + range_pos):

 p_array.append(p_array[-1] + step_pos);

 return p_array

class ModulationTransfer():
 """

 Routines needed to perform a modulation transfer measurements

 """

 def __init__(self, intensity=1e-6, tolerance=0.25):

 #Procedure data

 self.img_edge = '''';

 self.col_st = 0;

 self.col_end = 0;

 self.row_st = 0;

 self.row_end = 0;

 self._diff = '''' ;

 self.focus_position = 0;

 self.start_pos = 2.5; #initial position of motor stage

 self.roi = Vector(4);

 self.numpoints = 1000 ;

78

 # here we find the product data...

 soft_dir = os.path.join(os.environ['PROJECTDIR'], 'python')

 sys.path.append(soft_dir)

 try:
 from ChipProperties import product;

 self.chip = product();

 self.chip.load_testboard();

 self.project_dir = self.chip.sensorname;

 print "Sensor class initialized. Chip mode is %s" % self.chip.mode;

 except:
 self.chip = '';

 self.project_dir = 'unknown';

 print "Could not load the chip properties. Exiting"

 return;
 self.test_dir = "Modulation Transfer Function";

 self.NAS_dir = os.path.join("\\\\192.168.2.40", "Public", "BulkData");

 self.output_dir = os.path.join(self.NAS_dir, self.project_dir, self.test_dir);

 #Folder for current experiment

 self.image_dir = "";

 # stage initialization

 try:
 self.stagex = TDC001.Connect('83847325');

 print "ThorLabs stage is initialized successfully";

 except:
 print "ThorLabs stage is not initialized!";

 # saving desired light intensity and tolerance settings

 self.lint = intensity;

 self.tol = tolerance;

 # Initializing the equipment

 try:
 self.glsc = Equipment.GLSC();

 print "GLSC initialized successfully. Calling its calibration functions";

 self.glsc.InitInstrument();

 self.glsc.Calibrate();

 except:
 print "Could not initialize the GLSC";

 # ready

 print "MTF method ready";

 def focus_area(self):

 """

 place the lens at appropriate position using motor stage so that image is more

 or less focused and position is defined by self.start_pos during class initialization

 """

 self.stagex.MoveAbsolute(self.start_pos);

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image();

 handle = "Focus Select"

 ImageLab.Plot(self.chip.image[:,:,1], handle);

79

 select = Ask("Please select ROI and type ok")

 if select == 'ok':

 area = ImageLab.GetSession(handle)["ROI1"].Area;

 self.roi[0] = area.Left;

 self.roi[1] = self.roi[0] + area.Width;

 self.roi[2] = area.Top;

 self.roi[3] = self.roi[2] + area.Height;

 else:
 print 'Please select ROI'

 return self.roi

 def find_focus(self, range_, step):

 """

 Use the thorlabs stages to define the best focal distance.

 Place image with slanted edge to define the focal distance

 select a roi. With median calculate the max stddev

 Input:

 range_ <float> - scanning range in mm

 step <float> - scanning step in mm

 Return: self.focus_position:

 """

 # grab image

 # get median image

 # select ROI

 # start focus

 # raw check finds max stddev

 self._diff = 0;

 self.focus_position = 0;

 # create position array

 position = position_array(self.start_pos, range_, step);

 # raw measurement

 for pos in position:

 self.stagex.MoveAbsolute(pos);

 print "stage position %4.3f [mm]" % pos;

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image();

 dummy1 = self.chip.image[:,:,0];

 dummy2 = self.chip.image[:,:,1];

 cds = dummy2 - dummy1;

 difference =

 (cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])].MedianFilter(5) -

 cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])]).stddev();

 if difference > self._diff:

 self.focus_position = pos

 self._diff = difference

 # fine tuning

 position = position_array(self.focus_position, 0.1, 0.05);

 for pos in position:

 self.stagex.MoveAbsolute(pos);

 print "stage position %4.3f [mm]" % pos;

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image();

80

 dummy1 = self.chip.image[:, :, 0];

 dummy2 = self.chip.image[:, :, 1];

 cds = dummy2 - dummy1;

 difference =

 (cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])].MedianFilter(5) -

 cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])]).stddev();

 if difference > self._diff:

 self.focus_position = pos;

 self._diff = difference;

 self.stagex.MoveAbsolute(self.focus_position);

 return self.focus_position;

 # save position data

 def capture_images(self, range_, step):

 """

 Scans the distance with a thor The MTF method class.

 You have to make sure this will not go beyond

 Input:

 self.focus_position <float> - current position in mm

 range_ <float> - scanning range in mm

 step <float> - scanning step in mm

 """

 # initializing the test board

 if self.chip.test_board==None:

 self.chip.load_testboard();

 self.chip.capture_image();

 else:
 self.chip.capture_image();

 if self.chip.test_board==None:

 print "AcquireImages(): Could not initialize the test system!";

 return;

 # Configuring folders for saving the data

 devpartnum = Ask("Enter the device part number please");

 image_type = Ask("Enter the image type (edge, dark or light)");

 experiment_type = Ask("Enter the edge direction (horizontal or vertical)");

 # setting the light off if the image type is 'dark'

 if image_type=='dark':

 self.glsc.light_off();

 devtemp = Ask("Enter the device temperature");

 # folder for current experiment

 self.image_dir = os.path.join(self.output_dir, "PartNum_%s" % devpartnum,

 experiment_type, image_type);

 DirectorySwap(path_to_directory=os.path.join(self.output_dir, "PartNum_%s" %

 devpartnum, experiment_type), directoryName=image_type);

 os.mkdir(os. path.join(self.image_dir, 'CDSed'));

 pos = [];

 pos = position_array(self.focus_position, range_, step);

 numsteps = len(pos);

 print "scan range from %.2f to %.2f mm with step of %.2f" % (pos[0], pos[-1], step);

81

 # allocating the memory;

 reset = Vector(self.chip.width, self.chip.height, self.chip.test_board.no_frames);

 signal = Vector(self.chip.width, self.chip.height, self.chip.test_board.no_frames);

 imgcdsed = Vector(self.chip.width, self.chip.height, self.chip.test_board.no_frames);

 # Running the loop to move motor stage and capture image

 for i in range(numsteps):

 print "Setting new stage position at %.2fmm" % pos[i];

 self.stagex.MoveAbsolute(pos[i]);

 if not(image_type=='dark'):

 # setting the intensity

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image(); # acquiring the images

 print "Capturing images...";

 # averaging to get rid of temporal noise

 for k in range(self.chip.test_board.no_frames):

 reset[:, :, k] = self.chip.image[:, :, k*2];

 signal[:, :, k] = self.chip.image[:, :, k*2+1];

 imgcdsed[:, :, k] = signal-reset;

 # saving the data

 tmp = reset.mean(2);

 file_name = 'PartNum_%s_%s_%s_reset_%.2fmm.png' % (devpartnum,

experiment_type, image_type, pos[i]);

 tmp.Save(os.path.join(self.image_dir, file_name));

 tmp = signal.mean(2);

 file_name = 'PartNum_%s_%s_%s_signal_%.2fmm.png' % (devpartnum,

experiment_type, image_type, pos[i]);

 tmp.Save(os.path.join(self.image_dir, file_name));

 tmp = imgcdsed.mean(2);

 file_name = 'PartNum_%s_%s_%s_%.2fmm.png' % (devpartnum, experiment_type,

image_type, pos[i]);

 tmp.Save(os.path.join(self.image_dir, 'CDSed', file_name));

 print "Scanning is finished, light source set off";

 self.glsc.light_off();

 print "Setting initial stage position (at %.1fmm)" % self.focus_position;

 self.stagex.MoveAbsolute(self.focus_position);

 # Preparing the log file

 ts = time();

 date_today = datetime.datetime.fromtimestamp(ts).strftime('%Y/%m/%d %H:%M ')

 header = "%s project %s measurement report\n" % (self.chip.sensorname, 'Modulation

Transfer Function');

 header += "Date %s\n" % date_today

 header += "Integration time setting %fs\n" % (float(self.chip.integration_time/1e7));

 header += "Sensor part reference (entered by user): %s\n" % devpartnum;

 header += "Sensor temperature (entered by user) is %sC degrees\n" % devtemp;

 header += "Sensor operating mode: %s\n" % self.chip.mode;

 header += "Sensor gain (capacitor) setting: %i\n" %

 self.chip.seqc_parameters['gain_value'];

82

 #vcmsrc = Ask("Type common-mode voltage source please");

 vcmsrc = 'provided by testboard ADC';

 header += "Common mode voltage source: %s\n" % vcmsrc;

 header += "Number of frames per illumination point %i\n" %

 self.chip.test_board.no_frames;

 header += "Light source intensity setting = %eW/cm2, tolerance = %.2f%%\n" %

 (self.lint, self.tol);

 # adding the data to header

 header += "Distance range from %.2fmm to %.2fmm with step of %.2fmm\n" %

 (pos[0], pos[-1], step);

 header += "Number of steps in this experiment is %i\n" % numsteps;

 header += "Image type (edge, dark, light) is %s\n" % image_type;

 header += "Edge direction (if specified) %s\n" % experiment_type;

 ts = time();

 st = datetime.datetime.fromtimestamp(ts).strftime('%Y%m%d_%H%M_');

 # make sure a timestamp is included in filename

 filename = "MTF_PartNum=%s__%s.txt" % (devpartnum, st);

 f = open(os.path.join(self.image_dir, filename), 'w')

 f.writelines(header);

 f.close();

 def correct_horizontal_image(self):

 """

 take ROI of the images and normalize, rotate and flip if needed

 """

 devpartnum = Ask("Enter the device part number please");

 image_type = 'edge';

 experiment_type = 'horizontal';

 # folder for current experiment

 self.image_dir = os.path.join(self.output_dir, "PartNum_%s" % devpartnum,

 experiment_type);

 path1 = os.path.join(self.image_dir, image_type, 'CDSed');

 os.chdir(path1);

 # set ROI

 # load edge image

 # load all the images for different position

 images = glob.glob1(os.getcwd(), "PartNum_%s_horizontal_edge*" % devpartnum);

 dummy_image = Vector.Load(self.images[0]);

 handle = "ROI Select"

 ImageLab.Plot(dummy_image, handle);

 cont = Ask("Please select ROI of at least 21 rows and type ok");

 if cont == 'ok':

 #keep in mind to change ROI number

 area = ImageLab.GetSession(handle)["ROI1"].Area ;

 self.col_st = area.Left;

 self.col_end = self.col_st + area.Width;

 self.row_st = area.Top;

 self.row_end = self.row_st + area.Height;

 dummy = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 #transition = "check if transition from black to white yes or no?"

83

 if dummy[0,0] > dummy[0,(self.row_end - self.row_st)-1] :

 transition = 'no';

 else:
 transition = 'yes';

 # clear previous data

 self.img_edge = '' '' ;

 for image in images:

 suf_x = image.split('_');

 res = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 edge = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 dark = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 light = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 edge_correct = (edge - dark)/(light-dark);

 edge_image = (edge_correct - edge_correct.min())/(edge_correct.max()-

 edge_correct.min());

 if transition == 'no':

 if self.img_edge:

 edge_image = edge_image.Rotate90CW();

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 edge_image = edge_image.Rotate90CW();

 self.img_edge = edge_image;

 if transition == 'yes':

 if self.img_edge:

 edge_image = edge_image.Rotate90CW();

 edge_image = edge_image.FlipV();

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 edge_image = edge_image.Rotate90CW();

 edge_image = edge_image.FlipV();

 self.img_edge = edge_image;

 else:
 print 'ROI not selected'

 return self.img_edge

 def correct_vertical_image(self):

 """

 take ROI of the images and normalize, rotate and flip if needed

84

 """

 devpartnum = Ask("Enter the device part number please");

 image_type = 'edge';

 experiment_type = 'vertical'

 # folder for current experiment

 self.image_dir = os.path.join(self.output_dir, "PartNum_%s" % devpartnum,

 experiment_type);

 path1 = os.path.join(self.image_dir, image_type ,'CDSed');

 os.chdir(path1);

 # set ROI

 # load edge image

 # load all the images for different position

 self.images = glob.glob1(os.getcwd(), "PartNum_%s_vertical_edge*" % devpartnum) ;

 dummy_image = Vector.Load(self.images[0]);

 handle = "ROI Select"

 ImageLab.Plot(dummy_image, handle);

 cont = Ask("Please select ROI of atleast 21 column and type ok");

 if cont == 'ok':

 #keep in mind to change ROI number

 area = ImageLab.GetSession(handle)["ROI2"].Area;

 self.col_st = area.Left;

 self.col_end = self.col_st + area.Width;

 self.row_st = area.Top;

 self.row_end = self.row_st + area.Height;

 dummy = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 #transition = "Is transition from black to white yes or no?"

 if dummy[0,0] < dummy[(self.col_end - self.col_st)-1,0] :

 transition = 'yes';

 else:
 transition = 'no';

 # clear previous data

 self.img_edge = '' '';

 for image in self.images:

 suf_x = image.split('_');

 res = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 edge = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 dark = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 light = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

85

 edge_image = (edge - dark)/(light-dark);

 edge_image = (edge_image - edge_image.min())/(edge_image.max()-

 edge_image.min());

 if transition == 'yes':

 if self.img_edge:

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 self.img_edge = edge_image;

 if transition == 'no':

 if self.img_edge:

 edge_image = edge_image.FlipV();

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 edge_image = edge_image.FlipV();

 self.img_edge = edge_image;

 else:
 print 'ROI not selected'

 return self.img_edge;

 def create_ESF(self):

 """

 Calculate the ESF of the image

 return ESF vector:

 """

 # choose what kind of intercepted column values you want

 data = Ask("polyfit(for small pixel) or raw(for large pixel)");

 if data == 'polyfit':

 self.numpoints = 1000;

 self.ESF = Vector(2, self.numpoints, len(self.images));

 for n in range(len(self.images)):

 image = self.img_edge[:, :, n];

 #determining transition and threshold value

 self.col_interp = Vector(image.Height);

 self.polyval = Vector(image.Height);

 y_list = Vector(image.Height);

 x_list = Vector(image.Height);

 for row in range(0, image.Height):

 col = 0

 while image[col, row] < 0.5: #check for transition

 col = col + 1

 threshold_col = col

 col_0=image[threshold_col, row];

 col_1=image[threshold_col-1, row];

 #transition position

 self.col_interp[row]=((threshold_col) +((col_0-0.5)/(col_1-col_0)));

 x_list[row] = row;

 y_list[row] = self.col_interp[row];

 #Polyfit transition position according to row number

 #perform 1st order polyfit

 poly = y_list.PolyFit(x_list, order = 1);

 for i in range(0,x_list.TotalSize):

 self.polyval[i] = poly[1]*x_list[i] + poly[0];

86

 UIUtil.Plot(x_list,self.polyval,str(n),'polyfit');

 plothandle = UIUtil.Plot('polyfit');

 plothandle.XAxis.Title.Text = 'row number';

 plothandle.YAxis.Title.Text = 'interpolated column number';

 #2nd way by taking polyval

 #21 pixels for each row

 col_integer = Vector(21*image.Height);

 col_exact = [];

 col_sort = Vector(21*image.Height);

 intensity_sort = Vector(21*image.Height);

 row = 0;

 j = 0;

 k = 0;

 for row in range(image.Height):

 for j in range(-10,11,1):

 col_integer[k] = self.polyval.Floor()[row] + j;

 exact = col_integer[k] - self.polyval[row];

 col_exact.append(exact);

 k = k + 1;

 col_exact.sort();

 j = 0;

 k = 0;

 row = 0;

 intensity = [];

 for row in range(image.Height):

 for j in range(0, 21):

 intensity.append(image[int(col_integer[k]), row]);

 k = k + 1;

 row = row + 1;

 intensity.sort();

 for i in range(21*image.Height):

 col_sort[i] = col_exact[i];

 intensity_sort[i] = intensity[i];

 UIUtil.Plot(col_sort,intensity_sort, str(n), 'ESF');

 #perform interpolation

 i = 0;

 j = 0;

 k = 0;

 col_start = math.ceil(col_sort.min()) + 1;

 col_end = math.floor(col_sort.max());

 step = ((col_end-col_start)/(float(self.numpoints-1)));

 self.col_interpol = Vector.FromRange(col_start, step, self.numpoints);

 intensity_interpol = Vector(self.col_interpol.TotalSize);

 polyval2 = [];

 for i in range(self.col_interpol.TotalSize):

 k = 0;

 polyval2 = [];

 dummy_x = Vector(2);

 dummy_y = Vector(2);

 for k in range(col_sort.TotalSize-1):

 if ((self.col_interpol[i] >= col_sort[k]) and (self.col_interpol[i] <=

 col_sort[k+1])):

87

 for j in range(2):

 dummy_y[j] = intensity_sort[k+j];

 dummy_x[j] = col_sort[k+j];

 poly2 = dummy_y.PolyFit(dummy_x, order = 1);

 polyval2.append(poly2[1]*self.col_interpol[i] + poly2[0]);

 intensity_interpol[i] = polyval2[0];

 for i in range(self.col_interpol.TotalSize):

 self.ESF[0, i, n] = self.col_interpol[i];

 self.ESF[1, i, n] = intensity_interpol[i];

 UIUtil.Plot(self.col_interpol,intensity_interpol, str(n), 'ESF_interpol');

 else:
 self.numpoints = 1000;

 self.ESF = Vector(2,self.numpoints,len(self.images));

 for n in range(len(self.images)):

 image = self.img_edge[:, :, n];

 #determining transition and threshold value

 self.col_interp = Vector(image.Height);

 self.polyval = Vector(image.Height);

 y_list = Vector(image.Height);

 x_list = Vector(image.Height);

 for row in range(0, image.Height):

 col = 0;

 #check for transition

 while image[col, row] < 0.5:

 col = col + 1;

 threshold_col = col;

 col_0=image[threshold_col,row];

 col_1=image[threshold_col-1,row];

 #transition position

 self.col_interp[row]=((threshold_col)+((col_0-0.5)/(col_1-col_0))) ;

 x_list[row] = row;

 y_list[row] = self.col_interp[row];

 #Polyfit transition position according to row number

 #perform 1st order polyfit

 poly = y_list.PolyFit(x_list, order = 1) ;

 for i in range(0, x_list.TotalSize):

 self.polyval[i] = poly[1]*x_list[i] + poly[0];

 UIUtil.Plot(x_list,self.col_interp,str(n),'raw');

 plothandle = UIUtil.Plot('raw');

 plothandle.XAxis.Title.Text = 'row number';

 plothandle.YAxis.Title.Text = 'interpolated column number';

 #2nd way by taking polyval

 col_integer = Vector(21*image.Height); #21 pixels for each row

 col_exact = [];

 col_sort = Vector(21*image.Height);

 intensity_sort = Vector(21*image.Height);

 row = 0;

 j = 0;

 k = 0;

 for row in range(image.Height):

 for j in range(-10, 11, 1):

88

 col_integer[k] = self.col_interp.Floor()[row] + j;

 exact = col_integer[k] - self.col_interp[row];

 col_exact.append(exact);

 k = k + 1;

 col_exact.sort();

 j = 0;

 k = 0;

 row = 0;

 intensity = [];

 for row in range(image.Height):

 for j in range(0,21):

 intensity.append(image[int(col_integer[k]),row]);

 k = k + 1;

 row = row + 1;

 intensity.sort();

 for i in range(21*image.Height):

 col_sort[i] = col_exact[i];

 intensity_sort[i] = intensity[i];

 UIUtil.Plot(col_sort,intensity_sort, str(n), 'ESF');

 #perform interpolation

 i = 0;

 j = 0;

 k = 0;

 col_start = math.ceil(col_sort.min()) + 1;

 col_end = math.floor(col_sort.max());

 step = ((col_end-col_start)/(float(self.numpoints-1)));

 self.col_interpol = Vector.FromRange(col_start, step, self.numpoints);

 intensity_interpol = Vector(self.col_interpol.TotalSize);

 polyval2 = [];

 for i in range(self.col_interpol.TotalSize):

 k = 0;

 polyval2 = [];

 dummy_x = Vector(2);

 dummy_y = Vector(2);

 for k in range(col_sort.TotalSize-1):

 if ((self.col_interpol[i] >= col_sort[k]) and (self.col_interpol[i] <=

 col_sort[k+1])):

 for j in range(2):

 dummy_y[j] = intensity_sort[k+j];

 dummy_x[j] = col_sort[k+j];

 poly2 = dummy_y.PolyFit(dummy_x, order = 1);

 polyval2.append(poly2[1]*self.col_interpol[i] + poly2[0]);

 intensity_interpol[i] = polyval2[0];

 for i in range(self.col_interpol.TotalSize):

 self.ESF[0, i, n] = self.col_interpol[i];

 self.ESF[1, i, n] = intensity_interpol[i];

 UIUtil.Plot(self.col_interpol,intensity_interpol, str(n), 'ESF_interpol');

 plothandle = UIUtil.Plot('ESF');

 plothandle.XAxis.Title.Text = 'pixel number';

 plothandle.YAxis.Title.Text = 'intensity';

 plothandle = UIUtil.Plot('ESF_interpol');

89

 plothandle.XAxis.Title.Text = 'pixel number';

 plothandle.YAxis.Title.Text = 'ESF_interpolated';

 return self.ESF;

 def create_LSF(self):

 """

 Calculate the LSF of the image from the ESF

 return LSF vector:

 """

 self.LSF_filtered = Vector(2, self.numpoints, len(self.images));

 self.LSF = Vector(2, self.numpoints, len(self.images));

 for n in range(len(self.images)):

 for i in range(1,self.col_interpol.TotalSize-1):

 self.LSF[1, i, n] = 0.5*(((self.ESF[1, i+1, n] - self.ESF[1,i,n])/(self.ESF[0,i+1,n] -

 self.ESF[0, i, n])) + ((self.ESF[1,i,n] - self.ESF[1,i-1,n])/(self.ESF[0,i,n] -

 self.ESF[0, i-1, n])));

 UIUtil.Plot(self.col_interpol,self.LSF[1, :, n], str(n), 'LSF');

 self.LSF_filtered[1, :, n] = filtering.savgol_filter(25, 25, 2, self.LSF[1, :, n]);

 #perform filtering on LSF data using filter coefficient from savgol_filter

 UIUtil.Plot(self.col_interpol,self.LSF_filtered[1, :, n], str(n), 'LSF_filt');

 return self.LSF;

 return self.LSF_filtered;

 def create_MTF(self):

 """

 Calculate the MTF of the image from the LSF

 """

 LSF_perfect = Vector(self.col_interpol.TotalSize);

 for i in range(self.col_interpol.TotalSize):

 if ((self.col_interpol[i] > -0.5) and (self.col_interpol[i] < 0.5)):

 LSF_perfect[i] = 1;

 UIUtil.Plot(self.col_interpol, LSF_perfect, '1', 'LSF_perfect');

 mtf_perfect = LSF_perfect.DFT().norm(0);

 mtf_perfect = mtf_perfect/mtf_perfect.max();

 UIUtil.Plot(mtf_perfect, 'MTF_perfect', 'MTF');

 UIUtil.Plot(mtf_perfect, 'MTF_perfect', 'MTF_filt');

 self.value = [];

 self.value_filt = [];

 for n in range(len(self.images)):

 mtf = self.LSF[1, :, n].DFT().norm(0);

 mtf = mtf/mtf.max();

 self.value.append(mtf[9]); #9 is Nyquist frequency obtained from perfect MTF

 UIUtil.Plot(mtf, str(n), 'MTF');

 for n in range(len(self.images)):

 mtf_filt = self.LSF_filtered[1, :, n].DFT().norm(0);

 mtf_filt = mtf_filt/mtf_filt.max();

 self.value_filt.append(mtf_filt[9]) #9 is Nyquist frequency obtained from perfect MTF

 UIUtil.Plot(mtf_filt, str(n), 'MTF_filt');

 return self.value;

 return mtf;

90

7.3. List of Acronym
ADC Analog-to-Digital Conversion

APS Active Pixel Sensor

BSI Back side illuminated

CCD Charge-coupled Device

CDS Correlated Double Sampling

CG Conversion gain

CVF Charge to Voltage factor

CMOS Complementary Metal-Oxide-Semiconductor

DR Dynamic Range

DSNU Dark Signal Non-Uniformity

FD Floating Diffusion

FPN Fixed Pattern Noise

FSI Front side illuminated

FWC Full Well Capacity

GSE Global shutter efficiency

HDR High Dynamic Range

MTF Modulation Transfer Function

NL Non-Linearity

PID Proportional Integral Derivative

PPD Pinned Photodiode

PPS Passive Pixel Sensor

PRNU Photo Response Non-Uniformity

PSD Power Spectral Density

PWL Piecewise Linear

QE Quantum efficiency

SNR Signal to Noise Ratio

SPI Serial Peripheral Interface

STI Shallow Trench Isolation

S/H Sample and Hold

