caeleste

IEEE Dresden 2008 Round Table on Nano CMOS and 3D electronics for Scientific Instrumentation and Imaging: Opportunities and practical aspects

Round table introduction slides

Bart Dierickx^{1,2}

¹Caeleste CVBA, Antwerp, Belgium <u>www.caeleste.be</u> contact: <u>bart@caeleste.be</u> ²Vrije Universiteit Brussel (VUB) Brussels, Belgium

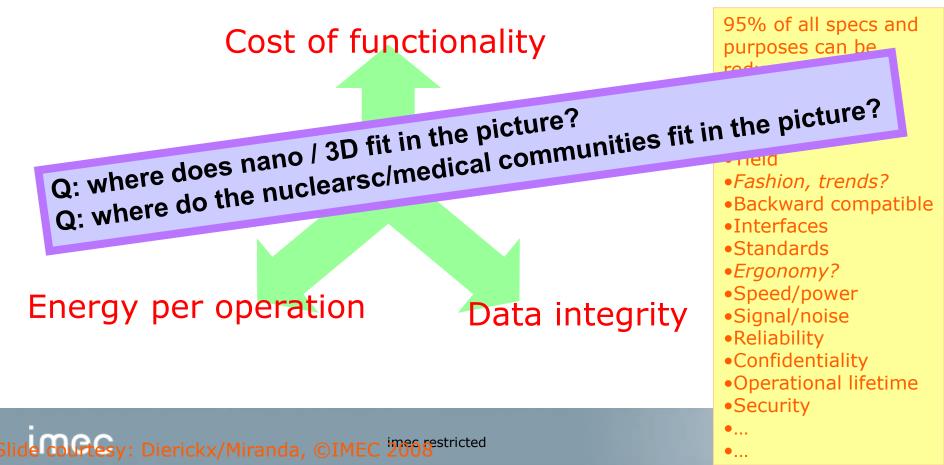
Why do we need nano & 3D?

Supply & demand situation

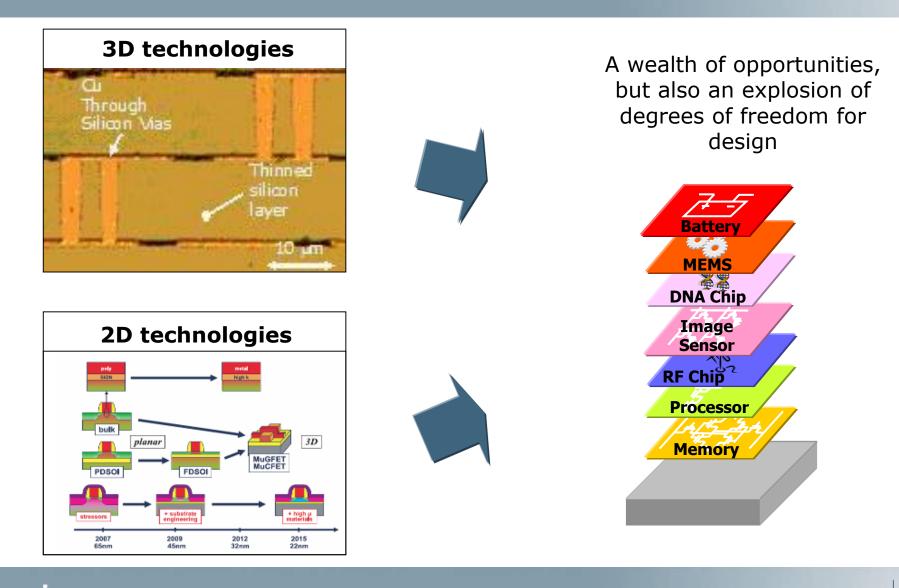
Demand: There are needs (don't ask me - you tell me! But it has something to do with) \rightarrow Size **Macroscopical (array) Pixel size** \rightarrow Data bottlenecks speed, processing close to the signal source, integrity \rightarrow Performance noise, S/N, sensitivity \rightarrow Cost

Supply:

•There happens to be a microelectronics industry that has an enormous drive for "scaling" •Supply is discriminatory


> →Technology research caters ONLY to the very high volume markets

 \rightarrow Other markets "may use as is" and use affordable modifications

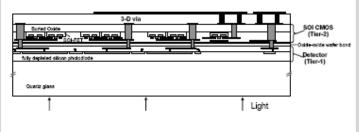


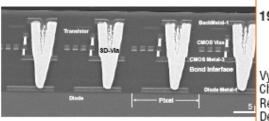
Micro-electronics industry challenges triangle

The purpose of integration and scaling, and the associated challenges are:

Trends in Manufacturing Technologies

Courtesy P. Marchal IMEC 2008

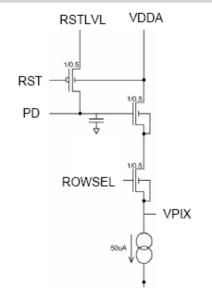

imec restricted


3D? Yes there is significant progress

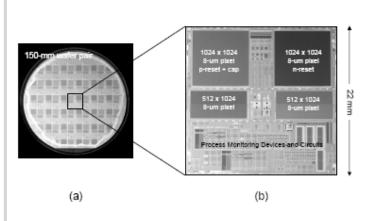
3D integration is driven by mainstream [SoC] industry

Spinouts to 2nd tier markets has potential

ISSCC 2005 / SESSION 19 / IMAGERS / 19.6



19.6 Megapixel CMOS Image Sensor Fabricated in Three-Dimensional Integrated Circuit Technology

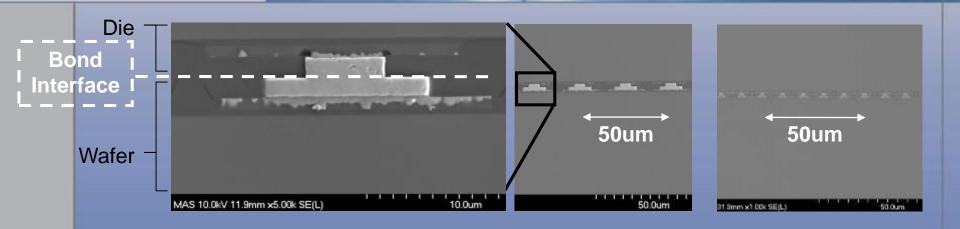

Vyshnavi Suntharalingam, Robert Berger, James A. Burns, Chenson K. Chen, Craig L. Keast, Jeffrey M. Knecht, Renee D. Lambert, Kevin L. Newcomb, Daniel M. O'Mara, Dennis D. Rathman, David C. Shaver, Antonio M. Soares, Charles N. Stevenson, Brian M. Tyrrell, Keith Warner, Bruce D. Wheeler, Donna-Ruth W. Yost, Douglas J. Young

MIT, Lincoln Laboratories, Lexington, MA

19.6.1: Schematic diagram of 3D stacked imager circuit. Tier-1 is a silicon photodetector wafer and Tier-2 is an inverted FDSOI CMOS wafer

19.6.2: Cross-sectional SEM micrograph through functional active pixel imager

19.6.4: (a) Completed 3D integrated wafer pair, (b) Die photomicrograph



19.6.3: Pixel schematic

DBIR

The 3D IC Company

		50um Pitch	25um Pitch	10um Pitch
	Test Part	9,950 Serial Connections	72,500 Serial Connections	1,000,000 Serial Connections
	Typical <r></r>	<20 mΩ (<1.5 Ω/um²)	<50 mΩ (<0.5 Ω/um²)	<50 mΩ (<0.5 Ω/um²)
Bare Die Reliability	T cycling (-65C - 175C)	1,000 Cycles, 18/18 PASS 10,000 Cycles, 9/9 PASS	1,000 Cycles, 5/5 PASS 10,000 Cycles, 4/4 PASS	1,000 Cycles, 10/10 PASS
	HAST (130C, 85%RH, 33psi)	96 Hours 12/12 PASS	288 Hours 6/6 PASS	

Hybridization & noise

- Going 3D brings major "goodies"
 - Optimal technology and design for each layer
 - Unprecedented functionality density
- If you leave the 2D plane you might lose other "goodies"
 - Buried photodiodes (dark current!)
 - Pinned photodiodes (CDS, low noise)
 - Low pixel interconnect capacitance (kTC noise)

Alternatives do exist but are more "*expensive*":
•External CDS, NDR; analog or digital CDS
•Active reset, tapered reset, silencing reset

Worth remembering

- Industry technology push is directed to mainstream markets
- Ride on the wave
 - Uses the emerging [partial] technologies
 - 3D trend
 - Fine pitch
 - High yield & reliability
 - Moderate? cost (yet! # Si does not decrease!)
 - Power density?
 - Nano (2D)
 - Extreme high density of functionality
 - Has its own challenges!
 - reliability; variability; low VDD; analog

Mainstream 3D & nano

Scientific imaging