## caeleste (

# Photon-to-Photon CMOS Imager: Opto-Electronic 3D Integration

Image Sensors Americas 2017 October 12-13, San Francisco, USA

Gaozhan Cai<sup>1</sup>, Bart Dierickx<sup>1</sup>, Bert Luyssaert<sup>1</sup>, Peng Gao<sup>1</sup>, Maarten Kuijk<sup>2</sup>

- Caeleste CVBA, Mechelen, Belgium
- 2. Vrije Universiteit Brussel, Brussels, Belgium



#### Outline

- Key technologies for future CMOS imagers
- Bottlenecks for high speed imaging
- Our proposal
- Take home message



- Key technologies for future CMOS imagers
- Bottlenecks for high speed imaging
- Our proposal
- Take home message

**Chapter 1** 

Key technologies for future CMOS imagers

#### Back-side illumination (BSI)

- Developed historically in the CCD process
- Reaches 100% fill factor
- Significantly increases quantum efficiency
- Disadvantages: complex process & cost
- First use in CMOS process
   OmniVision 2007
- First commercial product Sony 2009



#### 3D Integration

- It is a quite old idea ( > 30 years )!
- Akasaka Y. & Nishimura T., from Mitsubishi Electric

"Concept and Basic Technologies for 3D-IC Structure", IEEE IEDM,

1986, pp. 488-491



Fig.1 Schematic drawing of 3-D IC consisting of monolithic multi-layer structure.



#### TSV for image sensor

- TSV patented by W. Shockley in 1962 though not intended for 3D integration
- Sekiguchi M., et al., Toshiba

"Novel Low Cost Integration of Through Chip Interconnection and Application to CMOS Image Sensor", IEEE ECTC, 2006, pp. 1367-1374

 First time TSV (Toshiba calls it TCV) used in image sensors, but still single layer IC



Figure 1 CMOS image sensor package with TCV





#### Stacked image sensor

- Milestone: Sony announced first stacked image sensors in 2012 (figures below is one of them: IMX135)
- Readout circuits still on the same layer as pixel array
- ISP locates at the bottom layer
- TSVs located at the periphery of the sensor



(Source: Chipworks)

# Interconnects beneath pixel array Caeleste

- Olympus published stacked sensor with μ-bumps beneath pixel array at ISSCC 2013
- They later (VLSI 2015) made a much larger sensor with 4 million  $\mu$ -bumps with pitch of 7.6um
- By doing so, they can achieve excellent PLS for 16Mpixel global-shutter mode and 10,000 fps for 2Mpixel rolling-shutter mode





#### Direct Cu-Cu bonding

- Several solutions exist such as:
  - Surface-activated bonding
  - Cu nano-rod bonding
  - Solid-Liquid Inter-Diffusion bonding (SLID)
  - Direct Bond Interconnect (DBI®)
  - etc.
- DBI<sup>®</sup> is developed by Ziptronix (acquired by Tessera, now Xperi)
  - Direct oxide bonding at room temperature

- Cu-Cu bonding with low temperature anneal (150-300°C)
- Good scalability (pitch < 2μm)</li>



(Sony IMX260, Source: Chipworks)

#### 3-layer stacked imager

- State-of-the-Art: published in ISSCC 2017
- Sony product: IMX400

Pixel array

TSVs are used to connect Pixel array with Logic & Logic with DRAM





(Source: ISSCC 2017)



- Key technologies for future CMOS imagers
- Bottlenecks for high speed imaging
- Our proposal
- Take home message

#### **Chapter 2**

#### **Bottlenecks for high speed imaging**

# Reflection on interconnect metal Caeleste

In order to reach high speed

- ⇒readout multiple rows of pixels simultaneously
- ⇒many metal wires cover the front side of the pixel



#### Long metal wires

- In conventional 2D imagers, row and column wires run over the whole (or at least half) the pixel array
- The longer the column wires, the slower the readout speed
- The longer the row wires, the slower the access times



#### High number of I/O

- High number of I/O are required to handle the high date rate
- Complex system, high power consumption
- Signal integrity degrades significantly at high speed on the board which further makes the design more difficult





- Key technologies for future CMOS imagers
- Bottlenecks for high speed imaging
- Our proposal
- Take home message

#### **Chapter 3**

Our proposal

## Prior art - BSI & Wafer stacking Caeleste

- BSI for the imager layer: solves metal reflection fill factor limitation
- Just doing wafer stacking does not solve the long metal wires issue, further improvement is needed



#### Proposal a) divide in "tiles"

 The entire array should be split into sub-arrays (or "tiles") so that column/row wires are segmented and short

• Beneath each pixel tile (e.g. 250x250 pixels), there is readout IC (ROIC) tile

Each ROIC tile is self-contained





## High number of I/O? An optical link layer (-tile)



#### Rationale



#### caeleste

#### **Problems with Electrical Link:**

- a. Signal attenuation at high speed
- b. Crosstalk between channels
- c. Limited link distance
- d. Power consumption (drivers, pre-emphasis, equalization, overhead...)
- e. Bandwidth of electrical wires

#### **Advantages of Optical Link:**

- a. High data rate density
- b. Much less crosstalk
- c. Much longer distance in optical fibers
- d. Potentially lower <u>on-chip</u> power dissipation (laser is outside!)
- e. Wavelength Division Multiplexing (WDM) further increases the bandwidth density

Add photonic IC



# Caeleste Wavelength division multiplexing (WDM)

| Grating coupler  (((C)  A1)  Ring resonator | λ2 | λЗ | <u>λ4</u> »»)) |
|---------------------------------------------|----|----|----------------|
| ((« \( \lambda 1 \)                         | λ2 | λЗ | <u>λ4</u> »»)) |
| ((« \( \lambda 1 \)                         | λ2 | λЗ | <u>λ4</u> »»)  |
| ((° \( \lambda 1 \)                         | λ2 | λЗ | <u>λ4</u> »»)  |

| Grating coupler      |      |      |     |
|----------------------|------|------|-----|
| λ1<br>Ring resonator | λ2   | λЗ   | λ4  |
| <u> λ8</u>           | λ7   | λ6   | λ5  |
| λ9                   | λ10  | λ11  | λ12 |
| <b>((</b> λ16)       | λ15) | λ14) | λ13 |
|                      |      |      |     |

#### Final solution



- Key technologies for future CMOS imagers
- Bottlenecks for high speed imaging
- Our proposal
- Take home message

#### **Chapter 4**

#### Take home message

#### Take home message

caeleste

- Key technologies for future CMOS imagers
  - BSI
  - 3D integration
  - Photonic IC
- Bottlenecks for high speed imaging
  - Metal reflection
  - Long metal wires
  - High I/O counts
- Solution for high speed imaging
  - Add silicon photonic IC as third layer
  - WDM to increase date rate and reduce I/O counts







Acknowledgment:

Thanks **Wim Bogaerts** from Ghent University and **Pieter Dumon** from Luceda Photonics for fruitful discussions!