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Abstract

High dynamic range (HDR) image sensors often produce multiple frames that
have to be combined into one image. The goal of this research is to synthesize
an HDR image from the frames produced by state-of-the-art HDR image sensors.
To do this, a correction of the frames has to be done first. A calibration based
method is used, because this produces the most accurate and predictable results. A
photoresponse measurement and dark current measurement are required to find the
required calibration parameters. The proposed method is optimized for image sensors
produced at Caeleste. The dominant noise sources are identified first, and then
corrected in the order in which they occur. A polynomial non-linearity correction for
each pixel separately is implemented, and the dark current is estimated based on
the black pixels to make the correction drift resistant. A method is proposed in this
thesis to optimally merge the frames to achieve a good SNR over the dynamic range,
while also limiting the artefacts. Finally, the proposed methods have been tested on
real image sensors, while operating these sensors in different modes. The algorithm
was able to successfully reduce the non-uniformities and merge the frames.
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Chapter 1

Introduction

The image sensor market has grown a lot over the last years. It currently has a 4.7%
market share in the global semiconductor market and is predicted to keep growing in
the next years [7]. Dynamic range is an important characteristic for image sensors.
It represents the ability to capture a scene that has both dark and well illuminated
parts at the same time. This is required in many applications, ranging from mobile
phones to self-driving cars. However, in conventional linear pixel architectures, the
dynamic range is limited by the noise.

CMOS image sensors have traditionally been more popular than charge coupled
devices in consumer applications because of their lower price. Additionally, in recent
years they have also been growing in importance in high performance applications
(space, medical, ... applications). These CMOS image sensors give designers the
option to add extra transistors to each pixel and use this freedom to increase the
dynamic range. Often, these techniques result in a sensor that produces multiple
frames instead of just one high-dynamic-range image. The output of these sensors
then has to be processed and combined to generate the HDR image. This thesis
will investigate the state-of-the-art HDR sensors currently in use and develop a
post-processing algorithm for these sensors. The focus will be on high-performance
image sensors instead of consumer cameras. The information contained in the HDR
image will thus be a more important metric than the "beauty" of the images.

1.1 Thesis Organization

The next chapter is an introduction to image sensors and their properties. All the
concepts required to understand the rest of this thesis will be explained here. Chapter
three gives an overview of the HDR sensors currently in use and discusses their
advantages and disadvantages. Chapter four proposes an image correction algorithm
to remove the spatial noise and to linearise the image sensor. This is required before
the HDR frames can be merged. Chapter five will then discuss a method to merge
the frames outputted by an HDR image sensor into one image. Finally, the proposed
methods are tested on two real image sensors, both with a different pixel architecture.
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1. Introduction

Chapter five and six will show the results of the measurements that have been done
and verify the performance of the proposed algorithm on both of the sensors.

1.2 Caeleste
This thesis was done in collaboration with Caeleste. They are a fabless image sensor
design company in Mechelen which focuses on sensors for medical, space or industrial
applications. They are responsible for both the design and characterization of new
sensors, and provided access to their lab, image sensors and knowledge for the
research.

2



Chapter 2

Image Sensor Concepts

This chapter provides the reader with background information about image sensors.
The basic operation principles of an image sensor will be explained first. Afterwards,
an overview of the static and temporal noise sources in an image sensor is given.
Some other performance metrics of CMOS image sensors will be discussed as well.
Finally, the chapter ends with a detailed study about the dynamic range and signal-
to-noise-ratio (SNR).

2.1 Light

The main purpose of a digital image sensor is to transform light intensity to digital
data fit for computer representation, ideally with the lowest amount of noise and
offset possible. It is therefore important to first look at some basic properties of
light.

Each object has an illuminance and an emittance. The illuminance is the amount of
light received by an object. The S.I. unit of this is lux or lumens/m2. This unit is
weighted to match the perceived light intensity observed by the human eye. Because
this weighting is not useful for image sensors, which sometimes even operate outside
the visible light range. The unit of W/m2 at the frequency of the light source is
used for the rest of this thesis as the unit for illuminance. An object can also emit
light (on its own or because of reflections), called emittance. For the same reason as
for the illuminance, the unit used in this thesis will be watt instead of lux. There
can be a huge difference in light intensities in nature, ranging from an illuminance
of around 1000W/m2 of white light outdoors in the sunlight to around 1W/m2 in a
normally illuminated office and even lower in night conditions [18]. An image sensor
is often required to capture details in both dark and bright spots in a scene, both in
good and poor lightning conditions, thus requiring a large dynamic range.

A large dynamic range is however not always required. An image sensor can also
change its light sensitivity between scenes (called interscene dynamic range), for
example by changing the integration time. Only when a scene itself contains a large

3



2. Image Sensor Concepts

difference in illuminance is the image sensor required to have a large dynamic range
as well (intrascene dynamic range) [18].

The human eye has a dynamic range of around 120 dB [16]. A linear image sensor
designed to have the same dynamic range would thus require an output accuracy of
at least 20 bits, which is very difficult to design with analog electronics because of
the noise, mismatch and distortion limitations in analog circuits. Because of these
limitations, it is in some cases necessary to design specialized high dynamic range
image sensors.

Figure 2.1: Comparison between the illuminance occurring in natural scenes VS
the illuminance of a low dynamic range image sensor. Courtesy [18].

.

2.2 Photodetectors
The most common way to transform the incoming light to an electrical charge is using
a PN photodiode (PD). When a photon with enough energy hits a silicon crystal,
an electron hole pair (EHP) can be generated either by an intrinsic or extrinsic
band-to-band transition [44]. Normally these EHPs would recombine quickly, but
when the EHPs are generated in the space charge region (SCR) of a PN diode under
reverse bias, the electric field in the space charge region will separate the optically
generated electrons and holes. This results in an electrical current Iph, called the
photocurrent [44].

An improvement over the normal PN photodiode is the pinned photodiode (PPD).
This photodiode has an extra grounded shallow highly doped P +-layer between the
oxide and the N-well implant of the PN diode (in the case of a P-type substrate)
[16]. A schematic of a typical PPD is shown in figure 2.2a. The extra P +-layer
satisfies the dangling bonds at the SI − SIO2 surface, reducing the dark current
[24]. Another advantage of the PPD is that the n-well is fully depleted, resulting in
a potential floor Vpin [52]. This means that when the PPD is connected to a lower
potential well during read out, all the photo-generated electrons will be extracted
from the PPD, resulting in ideally a complete readout and thus no image lag. This
is illustrated in figure 2.2b. A mosfet acting as a switch, called the transfer gate

4



2.3. Image Sensors

(a) schematic of a PPD showing the n-well,
P + implant and TG mosfet connecting the
PPD to the FD. Courtesy [52].

(b) Diagram showing the total charge
transfer from PPD to FD. Courtesy [42].

Figure 2.2: Pinned photodiode.

(TG), is used for this purpose. This mosfet is typically created by reusing the N -well
of the PN diode. In practice, there will always be some image lag (section 2.6.6).

2.3 Image Sensors

The photodiode as described in the previous section transforms a flux of photons into
a flux of electrons (current). The most basic image sensor would thus be an array of
these photodiodes where the current can be read out at the output for each pixel.
It is however often more practical to first convert this current to a charge by doing
an integration of the current over a certain time period (called integration time).
Then this charge can be read out as a voltage instead. There are two important
types of electronic image sensors: the charge coupled device (CCD) and the CMOS
image sensor (CIS). Both devices can utilize the same types of photodetectors. The
difference is how they read out the charge collected in each pixel.

2.3.1 Charge Coupled Devices

Charge coupled devices have been the most popular image sensor in the past and
still remain dominant in some applications [14]. A CCD consists of an array of
photodetectors and an analog shift register for readout. After an illumination period,
the integrated charges are trapped in a potential well. As can be seen in figure 2.3,
it is then possible to transport these charges by using a three phased clock to push
the charges forward. The sensor is read out by first transferring the charges along
a column towards the last row, and then transferring the charges along this row
to an ADC. CCDs are today fabricated on specialized technology nodes, and often
only the readout buffer is still fabricated on the same chip as the image sensor [24].
This often results in more expensive sensors, since a more expensive technology node
and extra readout chips are needed, nevertheless with better overall performance
(lower dark current and noise) [14]. The simpler pixel architecture also results in
an increased fill factor (section 2.6.1) and a higher yield [24]. Today, CCDs still
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2. Image Sensor Concepts

dominate the large pixel image sensor market and are predicted to remain important
in this sector in the near future [24].

Figure 2.3: Method of charge transport in a CCD
with a three phased clock to move charges to the
next potential well. Courtesy [30].

Figure 2.4: Schematic of a
3T pixel. Courtesy [52].

2.3.2 CMOS Image Sensors

CMOS image sensors are taking over the image sensor market at the moment. They
can be implemented on standard CMOS technology, lowering their cost [52]. Be-
cause of this, most consumer electronics are currently CIS based. Furthermore, it
is possible to implement other CMOS functionalities like ADCs or digital logic on
the same chip, further reducing the cost of a camera system [14]. CMOS technology
also offers the flexibility to add extra on-chip and even in-pixel functionality, for
example HDR pixels. This extra flexibility in the readout chain can increase the
frame rate of CIS compared to CCDs as well [14]. A basic 3T pixel structure can
be seen in figure 2.4. The reset transistor is used to remove all the charge from
the PN photodiode before every new image capture. During the integration, the
photo generated charges are collected at the (parasitic) capacitor created by the
photodiode and the pixel transistors connected to it. In an active pixel sensor (APS),
this node is connected to a source follower to convert the charge to a voltage on the
column wire. The source follower is also connected to a row select transistor. This
transistor acts as a switch to select which pixel can be read out onto the column wire.
Passive pixel sensors (PPS) do not have this source follower, this makes it difficult to
read the charge on the high capacitive column wire. This makes PPS unpopular today.

A commonly used method to improve the pixel performance is the 4T pixel structure.
This pixel makes use of the PPD described earlier instead of a normal PN photodiode.
The charge is now first integrated on the PPD and then transferred to the node at the
gate of the source follower (called the floating diffusion (FD)) by activating the TG.
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2.3. Image Sensors

This separation between the PPD and FD also allows to optimize the FD capacitance
for optimal pixel gain and thus noise performance [25]. Another advantage of the 4T
pixel is the possibility of correlated double sampling (CDS). The voltage on the FD
before and after the integration are then read out. The sample before the integration
includes the offsets and reset noise of the pixel, which can then be subtracted from
the signal sample. This greatly reduces the kTC reset noise, 1/f noise and offset.
More complex pixel architectures with more transistors are also used to improve for
example global shutter performance, dynamic range or anti-blooming.

After the integration period, the voltages of all these pixels have to be read out and
converted to a digital number. Each column of pixels is connected to a column wire.
Using the row select transistors, all the pixels will be sequentially connected to the
column wire and read out. A current source to drive the source followers of all the
pixels is also connected to each column. The voltage on the column wire is typically
buffered and then converted to a digital number by an ADC. These ADCs can be
either on-chip or off-chip. It is also possible to use a single ADC to read out multiple
columns to reduce the amount of ADCs needed. More complex readout circuits are
possible depending on the required performance of the image sensor. Examples of
these improvements are automatic CDS subtraction and pipelining for increased
frame rate [34]. The readout method can be rolling shutter or global shutter. In
rolling shutter, the pixels are read out immediately after integration row by row.
This means that the integration period of all the rows does not begin and end at the
same time, resulting in artefacts for fast moving objects, as can be seen in figure 2.5.
In global shutter, all the pixels start their integration period at the same time and
are then read out row by row. This means that the pixels need to be able to store
the charge after integration. Inefficiencies in this charge storage can decrease the
performance of global shutter image sensors [31].

(a) Rolling shutter. (b) Global shutter.

Figure 2.5: Artefacts in moving objects. Courtesy [4].
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2.4 Temporal Noise in CMOS Pixels
Temporal noise causes the value of a pixel to vary between sequential frames when a
pixel is under constant illumination. This noise limits the dynamic range in low light
conditions because the signal will become indistinguishable from the noise. This
section is a discussion of the dominant noise sources an a CMOS pixel. The overview
below is mainly focussed on 4T pixels, although the same noise mechanisms are
present in all CMOS pixels. The noise variance in the formulas in this chapter is
expressed as the variation in the number of noise electrons.

2.4.1 Photon Shot Noise

This noise source is a shot noise or Poisson noise, meaning it is the result of the
discrete nature of the photons hitting the photodetector [16]. The variance of the
photon shot noise can be calculated as:

σ2
ph = µph = IphTint

q
[24] (2.1)

Where µph is the mean of the number of photo generated EHPs in the photodiode,
Iph is the photocurrent, Tint is the integration time and q is the charge of an electron.
The photon shot noise is a physical limit to the SNR of an image sensor and is the
dominant noise source when the illuminance on the sensor is large. To limit the
photon shot noise (PSN) contribution compared to the total signal power, it is better
to have a large amount of photo generated EHP. This can be done by for example
increasing the integration time, quantum efficiency (section 2.6.2) or the pixel size.

2.4.2 Dark Current Shot Noise

Dark current shot noise is also a form of shot noise, but this time caused by the
discrete nature of the dark current [24]. It can be described with the following
formula:

σ2
dark = IdarkTint

q
[26] (2.2)

Where Idark is the dark current. To decrease this noise, the dark current should be
minimized. This can for example be done by careful layout, using PPD based pixels
or cooling the device [24]. A long integration time will also increase dark current
shot noise. In a properly designed sensor, this DCSN is neglectable compared to the
other noise sources [24].

2.4.3 Reset Noise

Reset noise is the variation of the charge on the floating diffusion (FD) capacitance
after the resetting this capacitor through the reset transistor [16]. It is a thermal
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2.5. Static Noise in CMOS Pixels

noise source and it can be calculated as follows:

σ2
reset = kTCfd

q2 [16] (2.3)

This noise can be greatly reduced by correlated double sampling.

2.4.4 Readout Noise

This noise is the result of all the noise added to the signal when the signal passes
trough the readout chain. This can be all kinds of noise for example thermal noise or
quantization noise. Sometimes, part of the readout is done off-chip (external ADC).
The noise added there is also included in the readout noise for the scope of this
thesis:

σ2
readout =

C2
fd

q2 v2
readout[16] (2.4)

Except by changing the source follower, the readout noise cannot be reduced at pixel
level. Since this is mostly a thermal noise, it can also be reduced by operating the
sensor at a lower temperature [2].

2.4.5 Flicker Noise

Flicker noise, also called 1/f noise or pink noise, is a noise inversely proportional
to the frequency and is mostly generated at the gate of the source follower in a
pixel [34]. It also depends on the mosfet gate area and is becoming more and more
dominant in smaller technology nodes. The origin of flicker noise is not proven, but
it is believed that it is generated by the trapping and releasing of charge carriers at
the silicon and silicone-oxide interface at the gate of a mosfet [25]. CDS does help to
reduce this, yet it remains an important contribution to the total noise [34] [36]. It
can be reduced by increasing the size of the source follower or using a Pmos source
follower [2].

2.4.6 Other Temporal Noise Sources

There are several other less dominant noise sources in an image sensor. For example
clock feed-trough, noisy power supply, random telegraph noise [24] [2]. These noise
sources will not be considered in this thesis, but added to the readout noise during
the calculations.

2.5 Static Noise in CMOS Pixels
Static or spatial noise is the variation between the pixels in an image under constant
illumination. This noise remains constant between images captured over time. This
means that they can be compensated perfectly during post-processing (when there is
enough characterization data available). However, this compensation is not always
viable in practice because it can be computationally expensive or requires a lot of
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2. Image Sensor Concepts

characterization of each individual sensor. Some of these noise sources also depend
on temperature or drift over time, making calibrating this even more difficult. CDS
helps to reduce the static noise. This section discusses the most important fixed
pattern noise sources for generic 4T pixel based image sensors.

2.5.1 Fixed Pattern Noise

Fixed Pattern noise (FPN) includes the variations in the signal between the pixels
when there is no illumination and zero integration time. It is mainly the result of
process variations and offset voltages, both on chip and externally in the case that
some analogue processing happens off-chip. In figure 2.6, It is for example possible
to see which columns were read out by the same ADC. The fixed pattern noise can
be corrected by subtracting a dark frame from an image [24][16] [1]. Because FPN
is added both in the pixel and in the readout chain, CDS will not always cancel
this completely if it is done on-chip because it can still be introduced after the CDS
operation.

Figure 2.6: Dark image with increased contrast taken by a Caeleste image sensor
that clearly shows which columns are read out by the same ADC.

2.5.2 Photoresponse Non-uniformity

The gain of all the pixels can be different as well because of a different capacitance
of each storage node, photodiode area variations, doping variations, ... [2] This gives
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rise to an illumination dependant static noise called photo response non-uniformity
(PRNU). It can be expressed as a percentage (according to the EMVA1288 standard)
using the following formula:

PRNU1288 =
√

sgrey − sdark

µgrey − µdark
[9] (2.5)

Where µx stands for the mean of frame x and sx stands for the static variance [9].
The PRNU can be compensated by multiplying each pixel with its corresponding
gain value [2].

2.5.3 Dark Signal and Dark Current Non-uniformity

The dark signal is a result of the thermal generation in silicon creating EHP as a
result of defects in silicon [16]. The dark signal depends on integration time and also
has a strong dependency on temperature (doubling with a temperature variation of
a few degrees). The dark signal non-uniformity (DSNU) is the static noise resulting
from the static variance of the dark signal similar to the PRNU. It can also be
expressed (in number of noise e−) using the following formula:

DSNU1288 = sdark

K
[9] (2.6)

Where K is the sensor gain (digital number in the image per electron) and sdark is
the static variance of the dark current. The DSNU can theoretically be completely
corrected in post-processing as well. This requires data of the dark current for each
pixel for different temperatures and integration times. Measuring the dark current
can be difficult because the sensor temperature has to be kept very constant as a
result of the low doubling temperature. In recent technology nodes, the dark current
has reduced drastically (a factor of 10 per technology node) [24].

2.6 Image Sensor Characteristics

While the temporal and static noise are important metrics, there are other factors
that define the performance of image sensors as well. In this section, the most
important of these are discussed.

2.6.1 Fill factor

The fill factor (FF) is the ratio of the light sensitive area compared to the total
pixel area. The non-light-sensitive part is being occupied by isolation between the
pixels, transistors and sometimes capacitors. As a result, a more complex pixel
architecture will often result in a lower fill factor. The FF is important because a
larger photodiode can collect more photons, resulting in a larger SNR as explained
in section 2.7.
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2.6.2 Quantum Efficiency

The quantum efficiency (QE) defines the ratio of EHP generated per photon hitting
the pixel. According to the convention used in EMVA1288 [9], the amount of photons
hitting the complete pixel area has to be accounted for in the formula, not only
the photons hitting the light sensitive area. The fill factor is thus included in this
definition.

The QE is also wavelength dependant. A photo diode can be tuned to operate
optimally for a specific wavelength by changing the doping concentration and depth
of the PN depletion region [16]. Another strategy to improve the QE is to use back
side illumination (BSI). In BSI sensors, the wafer is thinned and the light reaches
the image sensor from the back side instead of having to travel trough all BEOL
layers (figure 2.7). This will result in more photons reaching the photodiode. BSI
requires exta process steps and increases the cost of an image sensor.

(a) Front side illumination. (b) Back side illumination.

Figure 2.7: Back VS front side illumination. Courtesy [5].

2.6.3 Charge-to-voltage Conversion Factor

An electron collected in the PD is converted to a readout voltage at the output of the
sensor. The voltage difference per electron at the output is called Charge-to-Voltage
Conversion factor (CVF) or sometimes called conversion gain. This depends on
the FD capacitive value and on the gain of the readout circuit. A low gain will
increase the contribution of the readout, while a large gain can saturate the readout
electronics.

2.6.4 Full Well Capacity

After collecting a certain number of EHP’s, the image sensor will saturate. This
can be the result of saturation in the FD, PPD, ADC or the readout circuit. The
maximal amount of EHPs the sensor can read out before saturation is called the
full wel capacity (FWC). A larger FWC thus requires larger pixels. This parameter
limits the upper limit of the dynamic range.

2.6.5 Linearity

Often it is desirable to have a linear dependancy between the incoming photons and
the ouput of an image sensor. In that case, any deviation from this linear response
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is an unwanted effect. There are multiple definitions for this non-linearity (NL). The
nominal definition used at Caeleste uses the following formula:

NL[%] = Emax

FS
∗ 100[1] (2.7)

Where Emax is the maximal deviation from the linear fit between 0 and 90% of the
FWC, and FS is the full scale in the same unit as the maximal deviation [1]. Non-
linearities can be the result of several components in an image sensor, for example
the readout buffers or the capacitors to store charge. The pixels itself also contribute
to the non-linearity. The conversion from photons to charge in the photodiode is
almost completely linear [25].

2.6.6 Image Lag

It is possible that, especially in larger pixels, there is some residual charge left at the
PPD after the charge transfer to the FD. This will cause some information to be
retained from one frame to the next, resulting in ghosting artefacts in the images.
There are several causes for image lag. For example a potential barrier can prevent a
fraction of the charges from reaching the FD during charge transfer (shown in figure
2.8) [46]. A potential pocket in a PPD can have the same effect.

Figure 2.8: Image lag caused by a potential barrier in the PPD. Courtesy [46].

2.7 Signal-to-noise Ratio and Dynamic Range
The signal-to-noise ratio (SNR) of an image sensor is the ratio between the signal
power to the noise power at the output of the sensor, often expressed in decibels.
This is an important metric since it influences the quality of an image. Both the
signal and the noise (ex. DCSN) depend on the illuminance. Therefore, the SNR is
often plotted in function of illuminance or in function of the photo current.

SNR = 10log10(Psignal

Pnoise
) (2.8)
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The dynamic range is the ratio between the lowest and highest detectable light
intensity, often expressed in decibels. There exist many definitions for dynamic range,
depending on what is defined as the maximum and minimum detectable signal [18].
The lowest detectable signal is generally considered to be the illuminance for which
the sensor has a noise power equal to the signal power [16]. This limit is chosen
higher, especially when the image is meant to be shown to a human since a SNR
of zero decibels will not produce beautiful results. The highest detectable signal
can have several limitations. It is possible to take the point where the input SNR
becomes zero again as will be explained later in this section. Another possibility
is the illuminance for which the FWC is reached [9]. Some sensors are limited by
the ADC range or can have saturation in the readout circuit, and in that case, this
saturation point is considered the upper limit [9]. Finally, for linear sensors, a point
where the sensor is no longer linear enough is sometimes chosen as the upper limit.
For this thesis, the dynamic range will be defined as the range between the point
where the SNR becomes larger than zero decibels until the point where the SNR
becomes lower than zero decibels again since this is the most general definition [18].

A theoretical model for the temporal noise can be found using the assumption
that the noise between all the pixels is independent and all the noise contributions
described in section 2.4 are independent. The result of these assumptions are that
the temporal noise sources can be added up [9] [24]:

σ2
total,output = σ2

ph + σ2
dark + σ2

reset + σ2
reset + σ2

other (2.9)

Using this formula and equation 2.1, 2.2, 2.4, the total SNR at the output of a linear
sensor can be written as:

SNRoutput =
I2

pht2
int/q2

Iphtint/q + Idarktint/q + kTC/q2 + C2
fdv2

readout/q2 + σ2
other

(2.10)

=
I2

pht2
int

q(Iph + Idark)tint + kTC + C2
fdv2

readout + q2σ2
flicker + q2σ2

other

[26]

(2.11)

The static noise can be considered as part of the total noise as well [18]. This noise
can be corrected completely in theory. So if it is included in the definition of dynamic
range, the dynamic range will depend on the performance of the correction algorithm.

As can be seen in figure 2.9, The SNR has two different slopes of 20dB/decade
for low light intensities. and 10dB/decade for high light intensities. This is because
at low illumination, the photon shot noise is less important and as a result the SNR
will increase in a squared relation to the photon current. For high intensities however,
the SNR is photon shot noise limited. This limitation cannot be overcome since it is
a physical property of the light itself.

The expression for SNR in equation 2.11 is only valid for linear image sensors.
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Figure 2.9: SNR curve of a typical linear sensor with a non-linear saturation and
the PSN limit.

The SNR curve for a non-linear sensor can be calculated analogue to the method
described in the previous section [26]. This is however an expression for the SNR at
the output signal. Most of the time the actual illuminance of each pixel is required.
In that case, when the slope of the photoresponse curve becomes small, a small error
on the output signal will correspond to a large error on the input signal [8]. It is
therefore useful to define the input SNR as well, which can be calculated as:

SNRinput = µp

µy

∣∣∣∣∣σµp

σµy

∣∣∣∣∣ SNRy[8] (2.12)

In case of a perfectly linear sensor, The input SNR will be exactly the same as the
output SNR before saturation and become zero after saturation. Most image sensors
however have a smooth transition between the linear region and saturation region,
resulting in a decreasing SNR slope near saturation as shown in figure 2.9.

As will be explained in the next chapter, there exist several methods to increase
the dynamic range. When comparing these techniques, the SNR will thus be an
important metric to compare the SNR of the different sensors. Some of the HDR
sensors modify the shape of the photoresponse (ex. logarithmic response or linlog
shape) [16] [24]. For this reason, it is important to use the input SNR instead of the
output SNR to measure the performance of an image sensor.
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Chapter 3

HDR Image Sensors

A standard linear image sensor can not always achieve the required dynamic range.
This chapter will discuss different methods that increase the dynamic range and the
trade-offs of all these methods. First, an overview of HDR imaging methods is given.
Afterwards, all these methods will be investigated in more detail.

3.1 HDR Methods

The most known method to increase the dynamic range is capturing multiple images,
each with a different integration time, and combining them in software [37]. The
images with a longer integration time will contain less noise at low illumination, and
the images with a shorter integration time will be able to capture scenes under high
illumination without saturating. No special hardware is required for this method
and it is therefore popular in consumer cameras. The problem with this approach is
that, when the scene contains moving objects, this will result in ghosting artefacts in
the final image. For this reason, true HDR pixels have been developed that require
only one integration period, and thus do not suffer from these artefacts.

One method to create a true HDR image sensor is by modifying the shape of
the response curve. For example using a logarithmic response curve, lin-log curve or
S-curve sensors has been proposed [26] [16] [6]. Another method is to use multilinear
pixels which approximates the logarithmic response by a series of linear responses [26].

It is also possible to keep using a linear sensor, but do multiple non-destructive
readouts after each integration period, all with another gain [24]. The high gain frame
will then contain less noise and the low gain frame will have a higher saturation level.
This is similar to varying the integration time, but with only one integration period.
These pixels do require some extra hardware to do this. The frames then have to be
combined using software methods similar to the frames obtained by changing the
integration time.

Finally, there have been some new methods proposed recently that operate dif-
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ferent from classical image sensors, often by adding more logic to each pixel. The
information in in these pixels is no longer only read out by converting the photocur-
rent to a voltage at the output of the sensor, but can be recovered from other effects.
It is possible to achieve a very high dynamic range in these sensors.

3.2 Logarithmic Image Sensors

To have the optimal dynamic range, a steeper slope in the photoresponse curve
at low illumination is required to increase sensitivity there, and thus make the
lowest detectable limit smaller [18]. A flatter slope at higher intensities is required
to increase the saturation level and thus increase the highest detectable limit. A
logarithmic image sensor has this effect. A simple implementation to create such
a behaviour can be realized by connecting the gate of the reset transistor to the
drain of that transistor [16]. A schematic of such a logarithmic pixel is shown in
figure 3.1. This pixel does not have an integration period and readout period, but
the photocurrent is continuously converted to a voltage at the FD. The SNR can be
modelled as:

SNR(Iph)) =
I2

ph

(Iph + idc)2const
[26] (3.1)

Where the constant factor depends on the readout noise, FD capacitance and the
parameters of the reset transistor. As can be seen in this formula, the SNR is almost
independent of the photocurrent iph when the photocurrent is much larger than
the dark current. This formula is however for the output SNR. Because of the flat
photoresponse slope at high illuminations, the sensitivity and thus the input SNR
will decrease for high illumination (section 2.12).

Figure 3.1: Schematic of a logarithmic image sensor. Courtesy [26].
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These pixels suffer from high FPN as a result of process variations in the reset
transistor [26]. CDS is also no longer possible since this requires a linear response,
even further increasing the FPN and decreasing the SNR [26]. The pixels also show
a temperature dependency [16]. The non-integrating nature of these pixels increases
the noise compared to integrating pixels [26]. The readout circuit is also challenging
to design as a result of the limited voltage swing at the output of the pixels [32].

3.3 Multilinear Image Sensors
Instead of using a true logarithmic response, the idea here is to use a piecewise linear
response to approximate a logarithmic response [26]. Contrary to the logarithmic
pixel, multilinear pixels are integrating pixels, resulting in a higher SNR [16]. An
example of such a response for four segments can be seen in figure 3.2. The amount
of segments can vary depending on the implementation. This behaviour can for
example be created in a 3T pixel by controlling the voltage at the reset gate and thus
the full well capacity. First, the FWC is kept low by applying an intermediate voltage
on the reset transistor, causing overflow when the voltage on the FD becomes too
low [24]. After a certain integration time, the FWC is increased by turning off the
reset transistor completely. This will create a multilinear response curve where the
characteristics can be controlled by changing the reset voltages and the integration
time between the steps. The collected charge in function of time can be seen in figure
3.3 for different light intensities. It is possible to extend this method to 4T pixels as
well by manipulating the TG voltage [17]. The equation for the SNR is:

SNR(Ipj)) =


(Iphtint)2

q(Iph+Idc)tint+σreadout
: 0 < Iphtint < Qsatθ

(Iph(tint−t1))2

q(Iph+Idc)(tint−t1)+σreadout
: Qsatθ < Iphtint < Qsat

[26] (3.2)

As can be derived from this equation, an SNR dipp will occur at the boundary
between the segments. A trade-off will have to be made between the SNR dip and
dynamic range improvement, and more segments will result in a smaller dip. CDS
could be done on multilinear sensors, but is only effective at low illumination before
the first knee-point [26]. The DAC that controls the reset voltages has to drive a
large parasitic capacitance, and because of this, these pixels have not been popular
until recently [16].

3.4 Multiple Capture Image Sensors
This technique relies on the non-destructive readout of multiple frames, each with
different gains. There are several methods to create these different gains. A method
to combine the frames into an HDR image is discussed in section 5, where the
information of the higher gains is used for the low illumination part of the sensor.
The information of the low gain frame is used for the high illumination parts, where
the high gains are saturated. The larger the difference between the gains, the higher
the dynamic range improvement. But at the point where one of the gains saturate,
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Figure 3.2: Multilinear response curve. Courtesy [26].

Figure 3.3: Multilinear sensor charge in function of time. Courtesy [26].

there will be an SNR dip, and the larger the difference between the gains, the larger
this SNR dipp will be. This is a trade-off when selecting the proportions between
the different gains in such a sensor, similar to multilinear pixels.

There are several methods to implement this. It is for example possible to cre-
ate a variable FWC in a basic 4T pixel by adding an extra capacitor that can be
connected to the FD by a merge switch (figure 6.1) [28]. The high gain is read
out first, afterwards, the merge switch is turned on, and the low gain is read out.
The charge that initially does not fit on the FD capacitance has to overflow to the
extra low gain capacitor. Figure 3.4 shows two methods to achieve this, either by
overflowing the charge over the TG (DC overflow method) or overflowing over the
TG (three level TG method) [28]. Another pixel architecture is shown in figure 3.6a.
In this pixel, the low gain is read out first, and afterwards the high gain can be read
out by pushing the charge back to the FD by turning off the mos capacitors [28]. It is
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also possible to split the diode into a large and small part [51] as shown in figure 3.6.
These can then both be read out after each other. An array of different pixels can
also be created, where some pixels have a higher gain than others [26]. For example
by giving some pixels a higher integration time or different FD capacitance. The
dynamic range will be increased at the cost of resolution.

(a) DC overflow method (b) 3 level TG method

Figure 3.4: Multiple capture pixels. Courtesy [28].

Equation 2.12 shows how the formula for the SNR in function of the photocurrent. In
this equation, it is possible to create a difference in gain for a certain illumination by
changing the integration time, FWC or the photocurrent (split diode pixel). Figure
3.5 shows the SNR curve when making the FWC five times smaller, and when making
the integration time five times larger for a certain photocurrent. Increasing the
integration time just results in a shift of the SNR curve to the left region (when dark
current shot noise can be ignored).

Figure 3.5: Comparison of multiple capture techniques.

The downside of these image sensors is that all the samples have to be read out indi-
vidually, resulting in a lower frame rate compared to the logarithmic and multilinear
sensors. Another downside is the reduced fill factor because of the extra hardware
that is required for this sensor. CDS is still possible in this method because of the
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(a) Pushback HDR pixel. Courtesy [51]. (b) 3 level TG method. Courtesy [28].

Figure 3.6: HDR pixels.

linear nature. These pixels will thus have lower spatial and temporal noise compared
to the previous methods.

3.5 Other Methods

Instead of converting the light intensity to a voltage, and then recovering the illu-
minance from this voltage, some pixels that acquire the information in some other
manner have recently been published. An example is a time to saturation pixel, where
the integration time needed before a pixel becomes saturated carries the information.
These pixels directly output a digital number [16].

Light to frequency pixels or spiking image sensors operate similar to the human
eye. The photocurrent is converted to a pulse train with a frequency depending on
the incoming light [11]. This is an asynchronous pixel, meaning that the readout is
frameless, and the spikes occur in real-time. It is not straightforward to reconstruct
an image suitable for visualization from this information, but this data could be used
directly in machine vision applications.

Self reset pixels operate the same as normal pixels, but automatically reset when the
the pixel becomes saturated [41]. This means that if there are M resets, the dynamic
range will be increased 20log(M)dB. The amount of resets that occurred during
the total integration period will form the most significant bits of the data, and the
charge left at the end of the total integration period will form the least significant bits.

The disadvantage of all these pixels is that they require a lot of transistors, re-
sulting in a low fill factor. These pixel types may become more popular in the future,
when smaller technology nodes are available, since the relative area of the transistors
will decrease for a certain photodiode size. The pixels can all achieve a very high
dynamic range.
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3.6 Conclusion
An overview of HDR image sensor implementations is given in this chapter. Modifying
the photo response will increase the dynamic range with very little extra hardware per
pixel, but this implementation suffers from high FPN and cannot do CDS effectively.
Multiple capture image sensors operate linearly and thus can still do CDS, but
require extra transistors and extra readouts, lowering the speed of the sensor. Finally,
there have been some other pixels proposed recently that increase the dynamic range
by doing in-pixel processing, at the cost of an even lower fill factor.
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Chapter 4

Non-uniformity Correction

There are several static noise sources that can, in theory, be corrected completely as
explained in chapter 1. This correction is not only needed to create good-looking
images, but is also required when merging the HDR images produced by some
HDR image sensors. The static noise and non-linearity can also interfere with some
characterization measurements, for example a quantum efficiency measurement. This
chapter will discuss a theoretical model for a calibration based image correction.
The goal of the non-uniformity correction is to compensate for this static noise and
non-linearity in the digital domain. This correction algorithm has to be generic
enough to be compatible with most existing and future Caeleste image sensors while
still using the sensor specific knowledge for an optimal performance. The amount
of calibrations to be performed for each sensor is best kept to a minimum. All the
theoretical methods proposed in this chapter will be tested on real sensors later. The
correction method should also be drift resistant in order to avoid that calibrations
are needed every time the sensor is used under different operating conditions, since
these calibrations can only be done in a lab environment and can be time-consuming.
Some image sensors do CDS on chip and some sensors output both the reset and the
signal frame. The correction can be different for both cases. The proposed correction
method is optimized for CISs that have CDS implemented.

4.0.1 Literature Review

There are two options to correct an image: calibration based image correction and
scene based image correction [12]. The scene based correction estimates the correction
parameters in real time based on the scene, sometimes relying on artificial intelligence
[47] [48]. This can be unpredictable and for this reason, a calibration based image
correction method is implemented in this thesis. The most used non-uniformity
correction is the 2 point logarithm [12] [40] [29]. This algorithm assumes that the
pixel response for each pixel is linear:

Vout,i = aiLin,i + bi[12] (4.1)

Where Lin is the illuminance at the ith pixel and Vout,i is the output voltage for the
ith pixel. These pixels can have a different gain ai and different offset bi. Thus, two
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measurements are required: a dark image to find bi and a gray image to find ai. This
method does not correct the non-linearity. To correct this as well, one possibility
is to use a multiple-point linear interpolation instead of the two-point method [12].
Recently, interpolation using polynomials or splines has been used as well [43] [33].
Another possibility to correct the non-uniformity is a lookup table based approach.
[21]. A polynomial approximation based approach has been implemented because
it can correct static noise and the non-linearity while it only has to store a few
parameters per pixel.

Variations in operating conditions can reduce the effectiveness of the correction.
The dark current and the corresponding DCNU is the most sensitive to these varia-
tions and thus has to be estimated when there is a change in the operating conditions.
The simplest method is to take a reference dark frame where a mechanical shutter
blocks the light, and subtract this from the actual image. But this shutter is often no
longer used in CIS. Some sensors have implemented a large amount of temperature
sensors between the pixels to estimate the dark current [10]. Section 4.3 will describe
a method to estimate this dark current per pixel, suitable for most Caeleste sensors.

4.1 Order of Corrections

In an image sensor, the received light intensity Lin in each pixel is converted to a
voltage at the output of the sensor, ideally linearly dependent to the incoming light.
There are a number of non-idealities that cause the output voltage to differ from
the input voltage. The output voltage can be modelled by a non-linear function of
the received light intensity f(Lin), different for each pixel, and depending on the
operating conditions. The correction algorithm has to apply the inverse of f(Lin) to
the sensor’s output to determine the light intensity at the pixel. In figure 4.2, the
sources of these non-idealities in an image sensor are plotted at their location in a
generic CMOS pixel. These errors have to be corrected in the inverse order in which
they occur [19].

Figure 4.1: Basic concept of image correction.

The first error introduced in the sensor is the dark current and the corresponding
DCNU. These are introduced at the photodiode and storage node. The dark current
is introduced before any non-linearities of the readout chain and therefore has to be
corrected after all the other corrections.
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The next error introduced is the photoresponse non-uniformity and non-linearity.
The PRNU is mainly the result of process variations in the SN capacitance and
source follower. The non-linearity is introduced everywhere in the sensor, mainly
caused by the source follower and a non-linear SN capacitor [2]. Since it is introduced
per pixel, not all the pixels will have the same non-linearity.

The readout chain also introduces offsets and non-linearities. Since the main source
of the non-linearity is introduced in the pixel, the non-linearities introduced in
the readout chain are not corrected separately and only the offsets of the readout
amplifiers are taken into account.

The complete order of operations is thus: correct the offset introduced in the readout
chain for each column, then correct the PRNU and non-linearity of each pixel, and
finally subtract the dark current. These calibrations require a photoresponse and
dark current measurement of the sensor in a lab environment.

Figure 4.2: Non-idealities and their order of occurrence in an image sensor. Courtesy
[2].
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4.2 Defect Pixels

It is important that the defect pixels are not included in the calculation of mean
values during calibration. A defect pixel can be a lot of things: for example a pixel
can be insensitive to light, can have a dark current that is too large compared to the
other pixels or can have a deviating photoresponse. It is also possible that an entire
column or a cluster of pixels is defect. These defects are not only caused by defects
in the silicon but can be caused by contamination of the lens as well. Caeleste has
developed a software framework to test for bad pixels and map them [3]. The first
step of the correction will be to run this algorithm and exclude these bad pixels
from here on. The value of these pixels can be reconstructed by a post-processing
algorithm, so the sensor is still usable when there are some defect pixels present.
This reconstruction is not part of this thesis. It is also important to exclude the test
rows that are used for characterization, present in most image sensors.

4.3 Dark Current Correction

The dark current is the first noise source introduced in a pixel, and thus should be
compensated for last. It is discussed first because the dark current is needed to find
the other required calibration data. The dark current can be modelled as a non-linear
function dependent on both the temperature and the integration time, and different
for each pixel. A method proposed at Caeleste was to do a linear approximation
of this dark current and scale it using the mean of the dark pixels. This can be
modelled as:

Idark(T, t, i) = idark,i ∗ Idark,mean(T, t)
idark,mean

(4.2)

Where Idark(T, t, i) is the dark current of the ith pixel in function of the temperature
T and integration time t. idark,i is the dark current of pixel i at the moment of
calibration. This dark current is then scaled by the scaling factor: Idark,mean(T,t)

idark,mean
.

This factor is the ratio of the mean dark current of the whole sensor to the mean
dark current during calibration. This has been verified and is shown on figure 4.3a
where the dark current for some random pixels is plotted in function of the mean
dark current. The relationship is indeed linear for all the pixels.

In the case of off-chip CDS, it is easy to find the dark current for each pixel: The
difference between the signal and reset frame in the dark will only contain the dark
current. For on-chip CDS, this is more difficult. The dark image after CDS contains
both the dark current and readout offsets, and it is not possible to differentiate the
dark current from these offsets. The separation of the two offsets is needed since
row offsets have a far smaller temperature and integration time dependency than
the dark current. The solution for this is to take one image with a long and one
image with a short integration time. The difference of these images divided by the
difference in integration time results in the dark image [1].
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(a) Dark current of random pixels
VS mean dark current. The dark
current is measured by changing the
integration time, showing a higher
dark current for longer integration
times.

(b) Dark current for a varying integration time
for different COBs. Courtesy [13].

Figure 4.3: Dark current.

This approach cannot compensate the dark current completely. The relation between
the temperature and the dark current is exponential [49]. Thus, when scaling the
dark current of each pixel to the average dark current, this method will only do a
linear interpolation of this exponential function. The dark current is not completely
linear dependent on the integration time as well, but this effect is small [50]. A
temperature gradient on the chip will also introduce an error when using this method,
as can be seen in figure 4.4. The temperature gradient in this case is the result of
the south side of the chip heating up more due to the presence of most of the back
end there (column buffers, output buffers, ...). The dark current on the hot side is
more than double the dark current on the cold side. This error cannot be corrected
since the temperature at each position often cannot be measured in real time, only a
global scaling factor is used. Finally, there are multiple sources of dark current: at
the PPD and all the storage nodes. In the current implementation, this separation
is not taken into account. This introduces errors as well. For example, when the
integration time in a global shutter image sensor is changed, the time that the charge
has to be stored on the storage node does not change, only the PPD dark current will
thus increase. A measurement of all the sources separately is difficult, as it requires
writing a new timing scheme for each sensor. Estimating the mean dark current of
all the sources in real time is also more difficult. This is not implemented for these
reasons. Often, one of the two contributions will be dominant, and the error made is
small [13][45].

The next required step is to estimate the scaling factor. The best solution is
to try to estimate it using the black pixels that are often included for characterization
purposes. The only type of black pixels suitable for this are EB0 pixels (pixels with
optical shielding of the photodiode). Other types of black pixels such as EB4 (extra
TG always on to flush the pixel permanently) will not have any PPD dark current.
These could be used however for the estimation of the dark current in global shutter
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since the FD dark current will often be dominant in that case. Also, it would be better
to place the black pixels perpendicular to the temperature gradient instead of parallel
as is now often done. In that case, It would be possible to estimate the temperature
gradient in real time as well. Enough of these pixels are needed to get a good estima-
tion of the average dark current. When there are no black pixels available, It could
still be possible to estimate the dark current by using the integration time and a build
in temperature sensor that is often available. If the latter is also not possible because
of the lack of a temperature sensor, the only option would be to re-calibrate the
sensor again by taking a new dark image when the temperature changes. It has been
proposed to estimate the temperature by using "hot pixels" [23]. These pixels have a
very high dark current because of defects. The last method has not been implemented.

Because of all these errors, the calibration of the dark current will work best if
the sensor is working in the same operating conditions as when the calibration was
done and the performance will deteriorate the further the operation conditions are
removed from the calibration point. It is therefore advised to do the dark current
measurement under nominal operating conditions and wait until the temperature of
the sensor is settled, instead of doing the dark current calibration immediately after
the start up of the sensor.

Figure 4.4: Temperature gradient in a dark current image.

4.4 Readout Offset
When CDS is done on-chip, there are still some offsets introduced after the CDS
operation as a result from the offset from amplifiers, buffers, ... in the analog circuits.
An example of this is shown in figure 2.6 where it is clearly visible which ADC

30
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sampled which columns. Since the readout path is the same for all the pixels in the
same column, all these in a column will thus have the same offset. It is thus not
necessary to store the offset per pixel, but only one value has to be subtracted for
each pixel in the same column.

However, This is not always the case: For example on some sensors, an inter-

Figure 4.5: Zoomed in section of the readout offset.

leaving mode is used to increase the speed of the readout (figure 4.6), resulting in
different readout paths in the same column. This is visible in the dark image as well.
Figure 4.5 is a zoomed in section of the dark image. In this figure, it is clearly visible
that there are two separate readout paths for each column. The solution is thus to
store not one offset value for each column but one offset value for each readout path
in each column.

To calculate these offset values, an image has to be taken in the dark. Prefer-
ably, the average is taken over several dark images to eliminate temporal noise. Then
the dark current has to be subtracted from this frame and the mean of each column
or readout path is taken (bad pixels not included).

4.5 Photoresponse Non-uniformity and Non-linearity
Correction

After the readout offset has been corrected, the photoresponse non-uniformity and,
when the sensor is not completely linear, a non-linearity correction are done. These
corrections can be done by approximating the photoresponse curve of each pixel:

Vout,i = fi(Lin) = aiϕ(Lin, 0) + biϕ(Lin, 1) + ciϕ(Lin, 2) + ... (4.3)
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4. Non-uniformity Correction

Figure 4.6: Interleaved readout chain. Courtesy [34].

Where ϕ(x, i) are the basis functions, preferable the monomial basis: ϕ(Lin, p) = Lp
in,

because the low complexity. Lin is the incident light power and Vout,i is the output
voltage for the ith pixel. The advantage of this approach over an interpolation based
method is that only the factors ai, bi, ci, ... have to be stored per pixel instead of
all the interpolation points. The problem is that not Lin but Vout,i is known at the
output of the sensor. When using the monomial basis, the required order for a good
fit can also become large because of the shape of the photoresponse. The solution
is to do the inverse: approximate the input light intensity by the measured output
voltage, using powers of the measured output voltage as basis functions:

Ltotal,i = ai(fi(Lin) − ri) + bi(fi(Lin) − ri)2 + ... = Lin + Ldark,i (4.4)

In this equation, ri is the readout offset of the ith pixel, ai is the PRNU correction
factor and bi is the second order non-linearity correction term (it is also possible to
use a higher order). It should be noted that Ltotal contains both the incident light
intensity and the signal resulting from the dark current. No constant term is needed
in this expression, since the readout offset correction corrects all the offsets except
for the dark current after CDS.

To calculate all the factors in the equation above, a photoresponse measurement is
required. This is done by placing a controllable light source in front of the image
sensor without using a lens to create a uniform illumination over the whole sensor
[1]. Then the light source intensity has to increase in a number of steps (around
50-100 steps is advised) and a frame has to be captured at each step. It is better to
capture multiple frames at each illumination step to reduce the temporal noise. It is
very important that the illumination is uniform or incorrect correction factors will
be calculated, resulting in an error when the sensor is used in practice. The absolute
light level is also needed for this correction. For this purpose, a reference photodiode
is used to measure the illumination at each step of the light source. [1].

Using the measured photoresponse, it is now possible to calculate the PRNU and
NL correction factor. First, the column offset and dark current have to be found
using the method explained in section 4.3 and section 4.4. For each pixel, the factors
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can be found by solving equation 4.4 using the least squares method:
Lin,0
Lin,1

...
Lin,n

 +


Ldark,i

Ldark,i
...

Ldark,i

 =


(fi(Lin,0) − ri) (fi(Lin,0) − ri)2

(fi(Lin,1) − ri) (fi(Lin,1) − ri)2

...
...

(fi(Lin,n) − ri) (fi(Lin,n) − ri)2


[
ai

bi

]
(4.5)

Where, Lin,x is the illuminance measured by the reference photodiode at step x
in the photoresponse measurement. This least squares equation has to be solved
for all the pixels individually. The least square will minimize the squares of the
residuals. For this, it is necessary to define the saturation point until where the
residuals have to be minimized. Choosing this point too low will lead to a reduced
dynamic range. Choosing the point too far will lead to a larger error after correction,
because the least squares will try to fit to the saturated part as well. To solve this, a
weight function is used that is proportional to the derivative of the photoresponse.
As a result, the flatter the photoresponse curve becomes, the lower the weights
will become resulting in a good trade-off between dynamic range and correction
errors after correction. Also, an absolute error at low illuminance results in an
increased relative error because the signal power is low. Therefore, the used weight
function should encourage a better approximation in the low illumination region.
The following formula is used for the calculation of the weights:

w(Lin) = F ′(Lin)
a + F (Lin) (4.6)

In this case, F (Lin) is the average photoresponse over all the pixels since calculating
different weights for each pixel is not worth it. The term a is used to control the
shape of the weight function and this value is set to the maximal value of F (Lin).
An example of a weight function is plotted in figure 4.7.

This method assumes the readout circuit is completely linear. This is not always the
case. A small non-linearity in the readout chain will only introduce a ignorable error.
If a second order correction is not enough, it is possible to increase the order for a
better correction. This will slow down the algorithm and requires more coefficients
to be stored per pixel. A second order correction will often be sufficient as will be
shown in chapter 6 and chapter 7.

4.6 Off-Chip CDS Correction

All the previous methods in this chapter assumed CDS is done on-chip and thus are
not valid without CDS. When the CDS is done off-chip, there are two options: either
subtract the reset frame in the beginning and then proceed in the same manner as
on-chip CDS, or correct both the reset frame and the signal frame individually and
subtract them after the corrections. The last method is the most accurate, since
CDS corrects for errors that are introduced at pixel level. The non-linearity of the
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4. Non-uniformity Correction

Figure 4.7: Graph showing an example of a photoresponse and the weights used
for the least squares equations.

rest of the sensor will introduce an error when the reset frame subtraction is done
before any corrections. This error is however small in a linear sensor and correcting
both frames would require far more operations and extra calibration data as well.
For this reason, the reset frame is subtracted before the correction. This has the
added benefit that there is no readout offset correction needed, since this is now
automatically done in the reset frame subtraction.

4.7 Performance Considerations

Speed is an important factor in the correction of images. Sometimes, a stream of
images has to be corrected, and it is preferred that this can be done fast or even
in real time. The method as implemented now is using floating point arithmetic
and is quite slow at the moment. However, several changes can be made to im-
prove the performance. Some possible improvements will be discussed next. This
is not the focus of this thesis and these improvements will not be implemented.
All the operations for the correction are linear, using only multiplications or addi-
tions, so a good speed can be achieved. Since for each pixel, some data has to be
loaded (column offset, PRNU, ...), the program will probably be memory constrained.

Firstly, all the floating point operation can be converted to fixed point operations
with only a small rounding error introduced. The word length of most image sensors
is in the range of fourteen to sixteen bits. When carefully considering the word
length at each step of the algorithm, it can be kept to a minimum. The limited word
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length also means that less memory will be used and this would make an FPGA
implementation possible.

Another improvement would be to parallelize the algorithm. There a lot of pixels
that have to be processed and these can all be corrected in parallel. It would also be
possible to use the SIMD instructions often included in a CPU. Another possible
improvement would be to move the time critical operations to another programming
language (for example c++) since Python is slow compared to these languages.
However, it is still important to have a Python interface to work alongside the other
internal software. Care should be taken to reuse the calibration settings as much as
possible to prevent reloading these parameters too often.

4.8 Conclusion
In this chapter, a theoretical implementation for image correction suitable for Caeleste
sensors is proposed. The proposed method is also able to remain accurate under
small temperature and integration time fluctuations. This algorithm requires a
photoresponse measurement and a dark current measurement. The algorithm has
been implemented in Python and is slow at the moment, requiring several seconds
to correct one image. The performance could be increased by implementing some
improvements. The practical performance of this algorithm will be discussed in
chapter 6 and chapter 7 for two different CISs.
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Chapter 5

High Dynamic Range Image
Synthesis

Some HDR sensors produce multiple images with different gains that have to be
combined into one image. The goal is to maximize the SNR in the final image while
avoiding artefacts in the transition regions between the gains. The HDR merging
logarithm in this chapter is optimized for true HDR sensors, so ghosting artefacts
as a result of moving objects will not be considered. First, a literature study of the
existing algorithms will be done. Next, an algorithm to merge the frames and achieve
the maximal SNR will be proposed, and finally, artefacts in the transition region will
be considered.

5.0.1 Literature Review

Suppose there is an HDR image sensor that produces n frames with a different gain
that have to be combined into a final image. After the image correction explained in
chapter 4, the digital numbers at the output of the sensor are transformed to the
light intensities at the input of the pixel. These still contain noise, both temporal
noise, and static noise that has not been corrected. The frames can then be combined
to find the HDR image using the following formula:

Lout,hdr,i =
n∑

j=1
wj(Lin,i,j)Lout,i,j and:

n∑
j=1

wj(Lin,i,j) = 1 (5.1)

Where Lout,i,j is the pixel’s illuminance estimation found by correcting the output
of the ith pixel and the jth frame, and Lin,i,j is the actual illuminance of that pixel.
The challenge now is to determine the optimal weight function w(Lin,i,j). A simple
solution for this is using binary weights that select the frame with the highest gain
that is not saturated [35] [22]. This produces an abrupt transition region and creates
artefacts in the transition region. This can be solved by using a smoother transition,
for example by using a linear weight function [20]. All the frames that are not
saturated contain information about the true illuminance of the pixel, and thus the
noise can be averaged out by using the correct weights [27] [22] [39]. The methods
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5. High Dynamic Range Image Synthesis

in literature try to estimate this optimal weight function by using a camera noise
model. They focus on HDR sensors that achieve extra dynamic range by changing
the integration time most of the time.

After HDR merging, tone mapping is needed to produce an image that looks good
when displayed on a monitor. Recently, HDR fusion methods that do the combina-
tion of the HDR merging and tone mapping at the same time became popular [38].
These methods do not create the intermediate exposure map. An exposure map is
sometimes useful, for example machine vision [22]. For this reason, these methods
are not considered this thesis.

Figure 5.1: HDR synthesis software flow.

5.1 Weights for Optimal SNR
As explained by [27], it is possible to find the weights that maximize the SNR over
the complete dynamic range of the sensor. But instead of trying to model the noise
and then estimating the weights based on this model as is done in literature, it is
possible to find the weights directly from the same photo-response measurement
that was required for the image correction. Multiple frames were taken at each
illumination level, and the noise can be calculated directly from these frames. When
combining the frames from an HDR sensor as expressed in 5.1, the total SNR under
uniform illumination can be found as:

SNRtotal(Lin)−1 =
n∑

j=0
w2

j (Lin)SNRj(Lin)−1 (5.2)

The derivation of this equation can be found in appendix A. Note that SNRj(Lin)
should be the input SNR instead of the output SNR (section 2.7). The weights
that optimize this equation can then be found by brute forcing all the possible
combinations for each value of Lin. This is the theoretical maximal achievable SNR
possible in a certain image sensor. An example of the optimal weights for a theo-
retical model of a multiple capture image sensor with two gains is plotted in figure
5.2 (data generated as in section 3.4). The noise reduction is more prominent in
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5.1. Weights for Optimal SNR

the region where the SNR curves of the multiple gains have a value close to each other.

These weights are a function of the illuminance Lin at each pixel. The actual
illuminance is not known, but instead, only an estimate containing noise for all of
the gains Lout,i,j is available. The actual illuminance has to be estimated from this
data before the frames can be combined. The output of the frame with the highest
gain that is not saturated will be used as an estimate of the actual illuminance at
the pixel. Since this has an error because of noise, the used weights will not be
completely optimal.

(a) SNR curve plotted against the photocur-
rent for the low gain mode, high gain mode
and the combined HDR image SNR.

(b) Weights for optimal SNR with uncorre-
lated photon shot noise.

Figure 5.2: HDR merging with uncorrelated photon shot noise.

During the derivation of equation 5.2, the assumption was made that all the noise
sources for the different gains are independent. This is not always the case. In some
HDR implementations, the photon shot noise is for example the same in all the HDR
frames since only one integration period has been done. Formula 5.2 can be updated
to include the noise correlation as well (derivation in appendix B). The formula in
the case of two gains is:

SNRtotal(Lin)−1 = w2
0(Lin)SNR0(Lin)−1+w2

1(Lin)SNR1(Lin)−1+2w0w1
cov(y0, y1)

Psignal

(5.3)
Here, the ideal weights can again be found using a brute force approach. The
covariance could be calculated from the photo-response measurement data as well.
Because the photon shot noise can no longer be averaged out, the SNR improvement
will thus be less effective compared to the uncorrelated case. The weights for
the same theoretical model, but this time with correlated photon shot noise, are
plotted in figure 5.3. As can be seen there, there is almost no improvement in the
SNR compared to binary weights (select the gain with the highest SNR for each
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illuminance). Because of this, binary weights will be used when the photon shot
noise is correlated.

(a) SNR curve plotted against the photocur-
rent for the low gain mode, high gain mode
and the combined HDR image SNR.

(b) Weights for optimal SNR with correlated
photon shot noise.

Figure 5.3: HDR merging with correlated photon shot noise.

5.2 Image Artefacts
Even after the image correction, the response curves from the different gains of an
HDR sensor are not completely linear. Thus, when using binary weights or when
using a weight function that has a steep slope, there will be a step in the combined
photo-response. An example from a real sensor is plotted in figure 5.4. This step
will create artefacts in the merged HDR image. The easiest solution would be to
increase the order of the non-linearity correction order to reduce the error between the
photoresponse curves of the different gains (section 4.5), and thus reduce the step size.

It is not possible to correct the non-linearity completely, even when a high order correc-
tion is used. And sometimes, a higher order can require too much time to compute. In
these cases it is necessary to smooth the weight function. The smoothness restriction
will result in a lower SNR, thus a trade-off has to be made between artefacts and SNR.

To minimize the artefacts, the weight functions should have a steep slope where
the error between the gains is small and a small slope when the error is large. The
weights that create the smoothest transition are plotted in blue in figure 5.5. The
slope of these weights is inversely proportional to the error between the gains. As can
be seen from this, the weights should in this case rise quickly in the low illumination
region. This is in contradiction to the optimal SNR weights where the steepest slope
is near the saturation of the high gain response. To prevent the slope from becoming
infinite when the error becomes zero at a certain point, the maximal slope can be
limited. This is useful if, because of drift in the sensor characteristics, the point with
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Figure 5.4: Step in combined photo response because of steep slope in weight
function.

zero error would move somewhat.

To make a better trade-off between the artefacts and the SNR when binary weights
would provide the optimal SNR, it is possible to calculate the optimal weights but
move the starting point of the weights closer to the saturation point as is illustrated
by the red curves in figure 5.5. This method is extended to image sensors with more
than two different gains. The starting point depends on the actual error between the
curves and the maximal acceptable artefacts.

Figure 5.5: Weight function for minimal artefacts with different starting points.
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5.2.1 Tone Mapping

The final exposure map needs more bits per pixel than the individual frames to store
the information because of the increased dynamic range. Monitors often only have a
resolution of around eight bit and cannot display the HDR scene. To solve this, tone
mapping transforms the linear exposure map to something that can visualize the
high dynamic range on monitors [16]. This has not been implemented in this thesis.
There are several implementations in literature which often focus on what looks the
best for humans.

5.3 Conclusion
A novel method to find the optimal weights is discussed in this chapter. The ideal
weights for optimal SNR were tried first, but by using the calibration data instead
of relying on a camera model. The idea of averaging out the noise does however
no longer work for true HDR sensors, where binary weights provide the almost
optimal SNR. Artefacts are created when using this function. A weight function that
minimizes these artefacts has been proposed, but at the cost of a decreased SNR.
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Chapter 6

Measurement Results on a Dual
Gain HDR Sensor

The image correction and merging algorithms will be verified on a real image sensor in
this chapter. The sensor used is a multiple capture HDR image sensor. This chapter
will begin with a brief description of this sensor. Afterwards, the measurement
procedure will be described and finally the results will be discussed when operating
the sensor in global and rolling shutter.

6.1 Image Sensor Overview

This sensor is a front side illuminated HDR image sensor based on a 4T pixel. An
extra overflow switch is connected to a storage capacitor to change the full well
capacity. A schematic of the pixel is shown in figure 6.1. CDS is implemented to
reduce the noise. It is theoretically possible to capture the low gain and high gain
HDR frame from the same integration period using a three level TG method (section
3.4), but this was never implemented and tested in the control software for this
sensor. For this reason, first an image with the overflow capacitor switch on and
then another image with the overflow capacitor off have to be captured after each
other to acquire the HDR frames. Both images will now be the result of a separate
integration period.

The sensor can operate both in rolling and global shutter mode. In rolling shutter,
the reset frame is subtracted on-chip and only one frame has to be read out. In
global shutter, the reset values of all the pixels are read out first, and afterwards,
the signal values of all the pixels are read out. An interleaved readout path is used
to increase the speed (section 4.4). The internal gain of the readout path can be
programmed to match the ADC range. The resolution of this sensor is 4096 by 4096
pixels. External ADCs are used, each connected to multiple columns, reading out a
differential voltage at the output of the sensor. [34]

This sensor includes a test-row that can be enabled for characterization purposes.
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This row includes sixteen identical blocks with each twenty EB4 black pixels and
some gray-scale pixels, implemented as a resistor ladder [34].

Figure 6.1: HDR pixel of the image sensor. Courtesy [28].

6.2 Measurement Setup

Figure 6.2 shows a picture of the measurement set-up for the photo-response measure-
ment. The image sensor is mounted on a test board that can be remotely controlled
by a computer. A Python framework is available to control all the test equipment.
This set-up is placed in a dark cabinet and it should be taken care of that stray light
cannot enter, especially at the entry point of the cables that connect the computer to
the measurement equipment. It is also important to disable or cover all the indicator
LED’s on the electronics inside the dark cabinet.

An 830nm LED light source is used to illuminate the sensor (the wavelength is
not important because this sensor has no color channels). The light intensity of these
light sources can be temperature dependent, thus it is advised to wait for around
ten minutes to allow the light source to stabilize before using the light source. It is
also important that the illumination of the sensor is uniform. For this reason, the
distance between the image sensor and the light source is made as large as possible
and the image sensor is placed directly under the light source.

The light intensity can be controlled by setting a DAC value in the light source. The
relation between this DAC value and the actual illumination of the sensor is not
linear. A calibration has to be done for each set-up (because the actual illumination
of the sensor depends on the distance between the light source and image sensor).
To do this calibration. A reference diode is placed on the sensor or as close to it as
possible. This reference diode is connected to a picoammeter that can be controlled
by the computer as well. A sweep of the light source’s DAC values is then done and
the light intensity at the reference diode is measured for each step. These values can

44



6.2. Measurement Setup

Figure 6.2: Measurement setup.

be interpolated later.

For this sensor, saturation happens at a low DAC value. This limits the reso-
lution because the number of possible steps is limited. The amount of light actually
reaching the sensor has to be reduced to increase the resolution. A neutral density
filter (a filter that reduces the light intensity of all the wavelengths equally) with
an optical density of one is used. This means that only 10% of the light passes
through it. A diffuser plate is also placed between the light source and the sen-
sor to block even more light and this also helps to create a more uniform illumination.

45



6. Measurement Results on a Dual Gain HDR Sensor

The output of the sensor is a differential voltage and the ADCs have a range
between minus two and two volts. The reference voltage of the ADC has to be chosen
as low as possible without clipping of the dark frames. After that, the gain of the
readout chain is chosen so that there is no overflow of the ADC when the sensor is
saturated. An internal gain of one was eventually used.

Finally, the performed photo response measurement is done by sweeping the light
source DAC over fifty steps. For each illumination level, ten images are captured
to determine the the average signal level and standard deviation. It is important
that the sensor reaches saturation just before the highest DAC setting in the sweep
because saturated frames contain no extra information and the whole photoresponse
is required. It is also required to wait until the temperature of the image sensor is
settled as well. Doing the measurements immediately from a cold start will result in
a different dark current and dark current gradient.

For the dark current measurement, no light source is required. The sensor is placed in
the dark cabinet and the sensor’s light-sensitive area is covered to reduce the amount
of stray light even more, because dark current measurements are sensitive to this
stray light. The integration time is then varied between the minimal integration time
(0,047s) and ten seconds, by doubling it every step. After the longest integration
time, another image was taken with the minimum integration time to verify that
the temperature has remained more or less constant during the measurement. It is
again important for this measurement that the sensor has time to reach a nominal
operating temperature before doing the measurement.

6.3 Results in Rolling Shutter

First, the procedure explained in the previous section has been done while operating
the sensor in rolling shutter mode. In figure 6.3a, the average photoresponse curve
for both the low gain and high gain modes are plotted before any correction has
been done. Both curves show a steeper slope at low illumination levels compared
to the medium illumination levels, which results in a non-linearity. The ideal linear
photoresponse is also plotted in this figure to show the non-linearity error. The
average dark current response curve for a varying integration time is plotted in figure
6.3b. This curve is almost linear in function of the integration time as expected,
but shows a slight non-linearity for low integration times. Figure 6.3c shows the
photon transfer curve for the temporal noise only. The low illumination part of
both curves looks as expected, showing a flat region representing the readout noise
dominated region and a linear slope, representing the photon shot noise dominated
region. At high illumination however, the noise of the low gain curve becomes lower
with increasing illumination. This should not be possible since the photon shot noise
should be dominant in the high illumination region, and thus the total noise should
increase relative to the sensors output level. The reason for this behaviour is not
known. The high gain response does not show this behaviour and this issue appears in
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the global shutter mode as well. Because the high gain response will be saturated for
the light intensity where this occurs, this will not have an effect on the calculation of
the HDR merging weights. The noise also has no effect on the non-linearity correction.

(a) Raw photoresponse and the ideal pho-
toresponse for the low gain and high gain
setting.

(b) Dark current for different integration
times.

(c) Raw photon transfer curve for high
and low gain.

Figure 6.3: Rolling shutter measurement results.

The corrected photoresponse after a third order correction can be seen in figure 6.5b
and figure 6.5c, together with the interval that contains 95% of the pixel values.
Since no temperature sensor or usable black pixels where present in this sensor, the
dark current was estimated based on the integration time only with the assumption
that the temperature remained constant. The average photoresponse is also plotted
in these plots as the red dotted line. The response curve is more linear after the
correction, as can be seen from this plot and from the 95% interval, more responses of
the different pixels are uniform as well. After the saturation point, the corrected pho-
toresponse is less uniform than before. The curves can now be directly used for HDR
merging. No scaling of the low-gain curve is needed any more because equation 4.5 fits
both the high gain and low curves to the actual light intensity at the input of the pixel.

47



6. Measurement Results on a Dual Gain HDR Sensor

Figure 6.4: Static noise reduction for different correction algorithm orders.

The resulting static noise and non-linearity, calculated using equation 2.7, after
corrections with different orders are shown in figure 6.4. The average noise is found
by using a weighted average using the weight function described in section 4.6. As
can be seen, a first order (PRNU correction only) improves the static noise a lot
compared to using no correction at all. The non-linearity becomes even slightly
larger. A second order does not create an improvement in static noise reduction in
this case, but it makes the response more linear. A third order creates an even more
linear response and reduces the static noise by a small amount as well.

The weights used for merging the gains are plotted in figure 6.6a. The low illumina-
tion part of this uses the optimal weights that average out noise (section 5.1), since
the photon shot noise is uncorrelated in this sensor. The high illumination part uses
the weights that result in the minimal amount of artefacts since the weights that
provide optimal SNR have a steep slope in this area (section 5.2). To calculate the
weights that result in minimal artefacts, the sensor is considered saturated when the
corrected photoresponse deviates more than 2% from the ideal photoresponse. The
merged photoresponse curve (after a third order correction) is plotted in figure 6.6b
and, as can be seen in this graph, there is no step visible in the merged response.
Finally, the SNR curves of both the gains and the merged SNR curve are plotted in
figure 6.6c, showing the dynamic range improvement of the HDR method and the
effect of using the noise averaging method on the SNR.
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(a) Interval containing 95% of the pixels
of the raw high gain response.

(b) Interval containing 95% of the pixels
after correction of the high gain response.

(c) Interval containing 95% of the pixels
of the raw low gain response.

(d) Interval containing 95% of the pixels
after correction of the low gain response.

Figure 6.5: Correction results.

6.4 Results in Global Shutter

The same measurement has been done while operating the sensor in global shutter
mode to test the algorithm on an off-chip CDS sensor. The dark current in this mode
is higher compared to the rolling shutter mode because of the extra dark current
source at the FD current during the charge storage period. This extra dark current
is much greater than the FD dark current [13], thus the average dark current can be
be estimated by using the EB4 black pixels (section 4.3). These pixels have storage
node dark current. The raw photoresponse is plotted in figure 6.7a. The sensor also
has a greater non-linearity compared to the rolling shutter mode, with the slope
of the photoresponse curve increasing near the saturation region. A third order
correction is needed to achieve a linear response for this operation mode. As can be
seen from the combined photorespones curve, plotted in figure 6.7c the photoreponse
curve is linear after the third order correction and merging. The static noise is also
reduced by almost a factor four.

The merging weights can be seen in figure 6.7b. These are almost the same as

49



6. Measurement Results on a Dual Gain HDR Sensor

(a) Weight function used for HDR merg-
ing.

(b) combined photoresponse in rolling
shutter mode.

(c) SNR of the low gain, high gain and
combined response.

Figure 6.6: HDR merging in rolling shutter.

the rolling shutter case because of the similar noise behaviour in this mode. The
combined photoresponses show no step with the used weights. The dynamic range is
increased 16.5 dB thanks to the multiple capture technique. Finally, the combined
SNR is shown in figure 6.7d.

6.5 Conclusion
The methods explained in section 4 and section 5 are tested on this sensor in different
operation modes. The third order corrections and the dark current estimation
algorithm result in a reduced spatial noise, and a good linearity is achieved in both
operating modes. The HDR frames also have to be merged into one frame without
any artefacts and averaging out noise at the same time. The measurements did
however show some irregularities (photon shot noise becoming lower with increased
light intensity). These problems should have no influence on the image correction
and merging algorithm itself.
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6.5. Conclusion

(a) Global shutter raw photoresponse. (b) Global shutter merging weights.

(c) HDR combined photoresponse in
global shutter mode.

(d) Combined SNR in global shutter
mode.

Figure 6.7: Global shutter measurement results.
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Chapter 7

Measurement Results on a True
HDR Global Shutter Image
Sensor

The correction and HDR merging algorithm has also been tested on a true HDR
sensor. First an overview of the sensor will be given. The measurement setup will be
explained next. The most important results will be shown afterwards.

7.1 Image Sensor Overview

The pixel used is a 7T True HDR pixel that is optimized to operate in global shutter
mode, and able to do integrate while read (IWR). The schematic of the pixel is
shown in figure 7.1. During integration, EHP’s are generated at the photodiode. The
electrons that will not fit on the storage node will overflow over TG3 to a storage
capacitor for later use during the integration. After the integration period, TG1
is opened and the remaining electrons on the PPD will move to the SN. During
the readout, the charge on the storage node after TG1 is read out first using CDS,
yielding the high gain frame. Afterwards, the merge switch is opened and the sum of
the charge from both the storage nodes is read out, yielding the low gain frame. The
readout path in this sensor uses an interleaved readout to increase the frame rate.
Unlike the previous image sensor, this sensor is able to operate in true HDR mode,
were both the low and high gain frames are read out from the same integration time.
[20] [15]

7.2 Measurement Setup

The measurement set-up for the photoresponse and dark current is similar to the
one used in chapter 6. The test system was placed in a dark cabinet and uniformly
illuminated with a controllable light source. The photodiode was placed next to the
image sensor instead to calibrate the light source. Because of the tall test system,
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Figure 7.1: Global shutter HDR pixel. Courtesy [20].

the distance between the light source and the image sensor is smaller in this set-up.
This test system heats up quickly, so the measurements had to be performed in a
short timespan to avoid overheating the sensor and altering the dark current. A
sweep of the DAC values of the ligth sources was done using 80 steps in total. 100
images at each step were taken to average out the noise and calculate the SNR. The
steps were spaced closer to each other in the in the low illumination region for an
increased resolution of the high gain response.

7.3 Results

figure 7.2a shows the photoresponse for both the low gain and the high gain frames.
This measurement was stopped a little too early, before the saturation of the low
gain occurred, because the light source reached the maximal level. A different
wavelength should have been used. As can be seen in this figure, the photoresponse
of this sensor has a neglectable non-linearity (smaller than 1%), so only a first order
correction (PRNU only) was done in this case. The average dark current could again
be estimated based on blocks of EB4 test pixels. The dark current in this sensor was
a lot higher than the dark current in the previous sensor as well.

The HDR weights used for merging the frames are shown in figure 7.2b. The
photon shot noise can not be averaged out, so the ideal weight is a step function,
with smoothing to avoid artefacts. The starting point of the saturation weights was
chosen at half the saturation illuminance. The combined photoresponse can be seen
in figure 7.2c. The frames can be merged without artefacts in the transition region.
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7.4. Conclusion

(a) Raw photorespons.e (b) Merging weights.

(c) Combined photoresponse.

Figure 7.2: Measurement results on a true HDR image sensor.

7.4 Conclusion
The correction and HDR merging algorithms have been tested on this image sensor as
well. This sensor had a linear response, so only a first order correction was necessary.
The photon shot noise could not be averaged out on this sensor, so a weight function
that limits the artefacts has been used. The photoresponse measurement was stopped
too early because the light source was saturated. This has no influence on the merging
of the images.
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Conclusion

A calibration based image correction was proposed first. The method identifies all the
noise sources in a CMOS image sensor, and corrects them individually in the correct
order. First the offset in each column is subtracted from the sensor output, next
a polynomial correction of the non-linearity for each pixel’s response is performed.
The order can be changed depending on the image sensors initial non-linearity, but a
second or third order will be sufficient in most cases. The polynomial interpolation
also helps to reduce the static noise.

Next, the dark current has to be corrected. This is done based on the idea that
the average dark current can be estimated based on the black test pixels, which are
often present in Caeleste image sensors. The advantage of this is that the correction
method is resistant to a change in operating conditions. A dark current image can
then be scaled linearly based on the black pixel average. The disadvantage of this
method is that black pixels are required, and not all types of black pixels are suitable.
Ideally, EB0 pixels should be used. EB4 pixels can be used as well when the PPD
dark current is not dominant to approximate the average dark current, but this will
result in a small error. The temperature behaviour of black pixels is not linear but
exponential, this will also result in an error when the sensor has a large temperature
deviation compared to when the calibration was done. A temperature gradient in
the image sensor will also decrease the accuracy of this method.

Finally, the frames of the different gains have to be merged into one HDR im-
age. A method to do this with minimal noise has been proposed. The merging
weights can be found directly from the calibration data. This is however not effective
on true HDR sensors, where the photon shot noise can no longer be averaged out.
In that case, binary weights should be used to achieve an optimal SNR. This creates
artefacts, and a smoother weight function is used in practice, where the slope depends
on the error between the photoresponse curves of the different gains after correction.
This comes at the cost of a reduced SNR at the transition region.

The performance of this algorithm has been verified on two different image sen-
sors. The images have been corrected successfully on both sensors, showing a reduced
static noise and a non-linearity below 1% could be achieved on both sensors. The
HDR frames could also be merged without showing artefacts. The measurements
did show some problems. On the first sensor, the noise was decreasing with in-
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creasing illumination. On the second sensor, the photoresponse measurement was
stopped too early. These problems should however have no influence on the algorithm.

A calibration has to be performed to get the required parameters, and these cal-
ibrations have to be done in a lab-environment. This means that this method is
in practice best used for high performance image sensors, where the effort of doing
this calibration is less problematic. All the operations needed for the correction are
linear, so they could be implemented efficiently, and the correction could be done in
real time, immediately after capturing each image. An FPGA implementation could
also be implemented doing these corrections before any data is sent to a computer.

58



Appendices

59





Appendix A

Combined SNR

Suppose an image sensor produces n frames with a different gain that have to be
combined into a HDR frame. The outputs yi of these gains for a pixel, after correcting
all the non-linearities and static noise sources, consists of a signal part S and a noise
part Ni:



y0 = S + N0

y1 = S + N1
...
yn = S + Nn

. (A.1)

These can be combined to find the value of the pixel in the HDR image using a
weight function:

ycombined =
n∑

i=0
wiyi where:

n∑
i=0

wi = 1 (A.2)

The SNR of this signal can be found as:

SNRcombined = E[y2
combined]

var(ycombined
(A.3)

Where the signal power can be calculated as:

E[y2
combined] = Psignal = S2 (A.4)
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A. Combined SNR

Because it is the same for all signals and the noise is assumed to have an average of
zero. The noise power can be found as:

var(ycombined) =var(
n∑

i=0
wiyi) (A.5)

=var(
n∑

i=0
wiNi) Signal is constant. (A.6)

=
n∑

i=0
var(wiNi) Assume all noise sources independant. (A.7)

=
n∑

i=0
w2

i var(Ni) (A.8)

Using these equations, the combined SNR can be found as:

SNRcombined = E[S2]∑n
n=0 wivar(Ni)

(A.9)

=
[∑n

n=0 w2
i var(Ni)

E[S2]

]−1

(A.10)

=
[

n∑
n=0

w2
i SNR−1

i

]−1

(A.11)
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Appendix B

Combined SNR With Correlated
Noise

In appendix A, the noise sources were assumed independent. If this is not the case,
the combined noise in the case of two gains ca be found as:

var(ycombined) =var(w0y0 + w1y1) (B.1)
=w2

0var(y0) + w2
1var(y1) + 2w0w1cov(y0, y1) (B.2)

From this, the combined SNR can be found again as:

SNRcombined = S2]
var(ycombined) (B.3)

= S2]
w2

0var(y0) + w2
1var(y1) + 2w0w1cov(y0, y1)

(B.4)

=
[

w2
0var(y0) + w2

1var(y1) + 2w0w1cov(y0, y1)
S2

]−1

(B.5)

=
[
w0SNR−1

0 + w1SNR−1
1 + 2w0w1cov(y0, y1)

S2

]−1
(B.6)
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