Improved Low Dark Current MWIR/LWIR MCT Detectors:
First results of ROIC and MCT measurements
Holger Höhnemann, Toulouse, July 4, 2018
Overview

- Introduction Low Dark Current (LDC) Program
- ROIC Highlights
- FPA and Test Devices
- Test Stand Design
- Selected Measurement Results
- Summary
Objectives of the LDC program

- The requirements for optical astronomy are highly demanding detectors for nearly photon counting in the mid- and long wave IR range.
 - Therefore the detector chip shall have a negligible dark current.
 - The read out circuit shall have a low saturation value for the collected photons.
 - The detector shall have negligible noise.

- The former ESA low dark current project was addressing the MCT detector chip mainly, but the available ROICs and test environments gave some limitations to the achievable results.

- Within this ESA project „Development OF Low Dark Current MWIR/LWIR Detectors“ an improved MCT material as well as a suitable read out circuit and an appropriate test set up should be prepared and characterised.
ESA Project „Low Dark Current MWIR/LWIR“

- A consortium of three partners was set up to achieve the required goals:
 - AIM Infrarot Module: as project leader and for MCT improvement
 - CAELESTE B.V: for the ROIC design
 - University of Cardiff, School of Physics & Astronomy: for the cryogenic tests

- Within this project a ROIC was designed, which has four different input stages for direct comparison of the capabilities of the different topologies.
- AIM applied some process modifications to improve the dark current behaviour for N-on-P and also for P-on-N MCT detector devices.
- University of Cardiff has prepared a highly light tight cryogenic test dewar to allow really dark measurements.
Array size: 4x320 (H) x 1080 (V)
 - MCT arrays with 320x320 pixels were assembled on this ROIC
Pixel pitch: 20 \(\mu \text{m} \)
Different Arrays are dedicated to different input stage topology:
 - 7T rad hard CTIA
 - 5T rad hard CTIA
 - 5T CTIA (using standard cell design)
 - Source follower
Each Segment assigned to single Video output.
Each segment can be operated “stand alone”.
ROIC Capabilities

- **Shutter modes:**
 - Integrate While Read (IWR)
 - Integrate Then Read (ITR)
 - Rolling shutter (RS)
 - Non-Destructive Readout (NDR) or Fowler sampling

- **Radiation hardness**
 - TID, SEU, SEL

- **Indium bump to MCT, ‘P on N’ and ‘N on P’ type**

- Programmable Integration capacitance: 8fF, 40fF

- Pixel readout rate: 20 MHz

- Operating temperature: 40K – 80K – 300K

- CMOS Technology : 0.18 μm XFAB
ROIC Input Stage

- Fully programmable pixel
- CTIA based
- Bi-directional (N on P, P on N)
- CDS
- Programmable integration capacitor

- All shutter modes:
 - IWR global shutter
 - ITR snapshot shutter
 - Rolling shutter
 - NDR Fowler sampling
High density pixel design
The pixel array, column readout and other blocks are controlled by serial to peripheral-like interface.

Toggling of a switch requires uploading logic ‘1’ and logic ‘0’ for a particular ASPI bit.

Any shutter mode can thus be obtained by simple FPGA programming.
FPA assembly 1

- AIM has assembled two different types of FPAs: Devices for the selection of the input stage and devices for comparison of MCT samples.
- For assembly 1 three MCT detectors of the same type with cut-off values at 12.5μm@40K are hybridized on one ROIC.
Test Device for assembly 1
Test device for FPA assembly 2

- For the FPA assembly 2 two different MCT samples with cut-off values at 12.5μm @ 40K having two different process modifications are assembled on one segment for direct comparison.
Test Cryostat setup

- Cross section of the liquid helium cryostat
Cryostat inner housing with assembled DUT
Measurement: ROIC with test pixels

- Pixel response with capacitive input @ room temperature
Measurement: Comparison of input stages

- Image representation of the center test MCT of assembly 1 under illumination is shown.
- This configuration allows direct comparison between input stage topology.
Measurement: Bias voltage characteristic MCT (1)

- MCT reverse bias characteristic for N - on - P material (cut-off 12.5μm @ 40K)
MCT reverse bias characteristic for P-on-N material. Cut-off values at 12.6 μm @ 40K. Here an impact of the doping level on the reverse breakdown voltage can be observed.
Measurement: Dark current (1)

- MCT electrical results: N – on P
 - Equivalent dark current is comparable to former results at LN2 temperatures and **lowest known dark current values reported ever** for lower temperatures.
Measurement: Dark current (2)

- FM003 MCT electrical results: P-on-N
 - Equivalent dark current is comparable to former results for low dark current materials at higher temperatures.
 - Best results achieved ever for 42K operating temperature. Tests are ongoing.
Summary

- Within this project a new design and test approach for low flux MWIR and LWIR MCT detectors was set up.

- New ROIC and improved MCT detector devices were prepared and tested.

- Initial ROIC design is fully functional. High flexibility in operating modes by programming capabilities via fast SPI interface.

- A test equipment was build up to ensure complete dark test environment.

- The lowest known dark current value ever reported was measured for operating temperatures at 40K and below.

- Measurements are ongoing, further highlights are expected.
This program was funded by the ESA TLP program "Development OF Low Dark Current MWIR/LWIR Detectors"

Many thanks for contributing to this project to

- Dirk van Aken (CAELESTE)
- Ajit Kalgi Kumar (CAELESTE)
- Dr. Peter Hargrave (University of Cardiff)
- Rashmi V. Sudiwala (University of Cardiff)
- Dr. Stefan Hanna (AIM)