High QE, Thinned Backside-Illuminated, 3e- RoN, Fast 700fps, 1760x1760 Pixels Wave-Front Sensor Imager with Highly Parallel Readout

Mark Downing, Dietrich Baade, Norbert Hubin, Olaf Iwert, Javier Reyes
European Southern Observatory ESO (http://www.eso.org)
Martin Fryer, Paul Jorden, Andrew Walker, Andrew Pike, Paul Jerram, Jerome Pratlong
e2v technologies ltd (http://www.e2vtechnologies.com)
Bart Dierickx, Benoit Dupont, Arnaud Defernez
Caeleste, Antwerp, Belgium (http://www.caeleste.be)
Philippe Feautrier
Domaine Universitaire LOAG (http://www-laog.obs.ujf-grenoble.fr/JRA2)
Jean-Luc Gach, Philippe Balard
Laboratoire d'Astrophysique de Marseille LAM (http://www.lam.oamp.fr)
Mark Downing Toulouse
Outline

- ESO and European Extremely Large Telescope E-ELT
- Wavefront Sensing and Adaptive Optics
- Specifications of the E-ELT WFS
- Results of the Technology Demonstrator, the TVP
- WFS Architecture and Design
- The massive parallel data problem
 - Solution - balanced clock tree of 88 LVDS channels
Who is ESO?

- European Organization
 - 15 member states: Germany, France, Italy, Switzerland, Netherlands, Belgium, Portugal, Denmark, Sweden, UK, Finland, Spain, and Czech Republic, Austria, Brazil

- **Goal** – to provide astronomers with state-of-the-art observational facilities

Operates 3 sites in Chile
- Two optical observatories
 - Paranal (2600m)
 - La Silla (2400m)
- One submillimeter
 - Chajnantor (5000m)
Paranal
→ Very Large Telescope

- VLT consists of four 8.2 m Telescopes
- Flagship facility of European ground-based astronomy.
- Most productive individual ground-based astronomical facility.
Our Next Challenge → European Extremely Large Telescope (E-ELT)

- E-ELT - a 39.5 m diameter, fully Adaptive Optics telescope.
- The E-ELT will be the largest optical/near-infrared telescope in the world (its mirror diameter will be almost half the length of a football field).
- Construction planned to begin next year; design complete and accepted
Wavefront sensors

Some instruments also contain WFS detectors

WFS adaptor

WFS arms (contain WFS detectors)
Adaptive Optics (AO) - removing the twinkle of the stars

Wavefronts from astronomical objects are distorted by the Earth’s atmosphere, reducing the spatial resolution of large telescopes to that of a 10 cm telescope.

Deformable mirror compensates the distorted wavefront, achieving diffraction-limited resolution.

Control System computes commands for the deformable mirror(s).

Wavefront Sensor measures deviation of wavefront from a flat (undistorted) wave.

Mark Downing Toulouse
Large Visible AO WFS Detector needed to sample the spot elongation

Sodium Laser Guide Stars
- Frame rate ~1 kframe/sec → require bright “guide stars”
- With natural guide stars only 1% of the sky is accessible
- Sodium layer at 80-90 km altitude can be stimulated by Laser to produce artificial guide stars anywhere on the sky

Mark Downing Toulouse
1/4 WFS image

- Natural Guide Star: **84x84** sub-apertures of **8x8** pixels \rightarrow NGSD
- Laser Guide Star: **84x84** sub-apertures of **20x20** pixels \rightarrow LGSD
ELT WFS DETECTOR
Multi-phase plan to progressively retire risk risks

<table>
<thead>
<tr>
<th>Design Study</th>
<th>Technology Validation</th>
<th>Development</th>
<th>Testing/Acceptance</th>
<th>Production Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Design Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>Retire Pixel Risks</td>
<td>Technology Demonstrators</td>
<td>Natural Guide Star Detector NGSD</td>
<td>Retire Architecture/ Process Risks</td>
<td>LGSD Production</td>
</tr>
<tr>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 LGSD Science Devices</td>
<td>Authorize Production</td>
<td>Testing</td>
<td>Engineering exercise</td>
<td>NGSD Production</td>
</tr>
<tr>
<td>30 NGSD Science Devices</td>
<td>Authorize Production</td>
<td>Testing</td>
<td></td>
<td>LGSD Production</td>
</tr>
</tbody>
</table>

Mark Downing Toulouse
Specifications of the ELT WFS

Physical characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel array</td>
<td>Stitched design for two versions: “Natural Guide Star Detector” NGSD - 880x840 pixels then “Laser Guide Star Detector” LGSD - 1760x1760 pixels</td>
</tr>
<tr>
<td>Technology</td>
<td>Thinned backside illuminated CMOS 0.18µm</td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>24µm</td>
</tr>
<tr>
<td>Pixel topology</td>
<td>4T pinned photodiode pixel</td>
</tr>
<tr>
<td>Array architecture</td>
<td>84x84 time coherent “sub arrays” of 20x20 pixels - LGSD image area size of 4x4cm</td>
</tr>
<tr>
<td>Shutter</td>
<td>Rolling shutter in chunks of 20 rows → synchronous detection within a sub-array.</td>
</tr>
</tbody>
</table>
Specifications of the ELT WFS

Performance

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsivity</td>
<td>100 to 160 μV/electron</td>
</tr>
<tr>
<td>Pixel full well Q_{FW}</td>
<td>4000 e$^-$</td>
</tr>
<tr>
<td>Read noise including ADC</td>
<td>< 3.0 e$^{-}_{\text{RMS}}$</td>
</tr>
<tr>
<td>QE</td>
<td>QE above 90% over the visible range → BackSide Illumination (BSI)</td>
</tr>
<tr>
<td>Image lag</td>
<td>< 0.1 %</td>
</tr>
<tr>
<td>MTF</td>
<td>ideal and symmetric in X and Y by design</td>
</tr>
</tbody>
</table>
Highly integrated

- All analog processing on-chip:
 - correlated double sampling (CDS),
 - programmable gain,
 - ADCs
- Many rows processed in parallel to slow the read out per pixel and beat down the noise.
 - trade study showed 20-40 to be the optimum number
- Fast digital serial interface to outside world
 - power consumption similar to high speed drivers to transport the analog signal off chip
 - better guarantee of achieving and maintaining low noise performance

Natural Guide Star Detector (NGSD)
scaled down demonstrator
~ ¼ of full size → no stitching
<table>
<thead>
<tr>
<th>Specifications of the ELT WFS Read out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of rows read in parallel</td>
</tr>
<tr>
<td>40 (LGSD) or 20 (NGSD) rows in parallel</td>
</tr>
<tr>
<td>Number of ADC’s</td>
</tr>
<tr>
<td>40x1760 (LGSD) or 20x880 (NGSD)</td>
</tr>
<tr>
<td>Number of parallel LVDS channels</td>
</tr>
<tr>
<td>22 (NGSD) or 88 (LGSD)</td>
</tr>
<tr>
<td>Serial LVDS channel bit rate</td>
</tr>
<tr>
<td>210 Mb/s baseline, up to 420 Mb/s (desired)</td>
</tr>
<tr>
<td>Frame rate</td>
</tr>
<tr>
<td>700 fps up to 1000 fps with degraded performance</td>
</tr>
<tr>
<td>2 to 3 Gpixel/s = 20 to 30 Gb/s over 88 parallel LVDS channels</td>
</tr>
<tr>
<td>Power dissipation (spec)</td>
</tr>
<tr>
<td>Maximum 5W , including the 88 LVDS drivers</td>
</tr>
<tr>
<td>Actual LVDS driver dissipation per channel</td>
</tr>
<tr>
<td>6.0 mW @ at maximum data rate. 4.5 mW in sub-LVDS</td>
</tr>
</tbody>
</table>
Demonstrated performance on Technology Validator - TVP

- In a nutshell
 - All features of NGSD/LGSD
 - 60x60 pixels,
 - Same pixel and ADC driving
 - 1200 (60x20) column ramp ADCs
 - > 700 frames/sec

- To optimize the pixel:
 - transfer gate and transistor geometries were varied in 12 pixel variants
 - threshold voltage of nmos transistors was varied
 - Implants to improve image lag were varied
Demonstrated performance on Technology Validator - TVP

• Key performances have been validated
 – \(< 3.0e^{-}\text{RMS}\)
 – Full well 4000...8000 e-
 – Conversion gains 100...160 \(\mu\text{V/e-}\)
 – Image Lag \(< 0.1\ %\)
 – Best pixel and implants found to go forward to next phase, NGSD

• Not tested in TVP:
 – Massive parallelism
 – Array of LVDS IO
 – Back Side Thinning & Back Side Illumination
Pixel designed for best centroiding performances, TCAD simulations

Y / center

X

Mark Downing Toulouse
LGSD/NGSD Stitching Plan

1 of 88 readout channel
One readout channel (of 88)

40 Columns of ADCs = 2 sub-arrays

20 rows of ADCs

110MHz Double Data Rate

clock

sync

parallel to serial

LVDS output

Mark Downing Toulouse
How to drive 210 MHz over 4cm?

Reference case for speed and skew

Skew>2ns

R/2 \Rightarrow \text{Speed} \sim *4

C/2 \Rightarrow \text{Skew} \sim /4

Mark Downing Toulouse
Capacitive load

Fast clock

R/4
C/4(?) \Rightarrow \text{skew} \sim 1/16

Fast clock

R/8(?) \Rightarrow \text{skew} \sim 1/64
C/8(?)

Mark Downing Toulouse
Fast clock

1/4

Capacitive load

Capacitive load

Capacitive load

Capacitive load

3/4

Fast clock

R/4

C/4

[skew ~ 1/16]

R/8(?)

C/8(?)

[skew ~ 1/64]
How to implement this when stitching?
Summary

- Preparation work for our next challenge, the E-ELT, is well under way.
- ESO has formed a good partnership with e2v and Caeleste.
- Multi-phase, progressive risk reduction development plan should guarantee that devices are available on-time that meet specifications.
- Measured results from the TVP have clearly validated the CMOS imager approach.
- The best pixel design that meets the requirements has been found to go forward to the next phase, the NGSD.
- The next phase, the NGSD, starts in January 2012.

Mark Downing Toulouse
Thank You

This work has been "partially funded by the OPTICON-JRA2 project of the European Commission FP7 programme, under Grant Agreement number 226604"